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Abstract

ATRAPOS is a novel (still in development) family of cryptographic round-
based permutations for use in the sponge construction. The ATRAPOS permu-
tations operate natively on elements of Fp (where p > 2 is a prime number).
ATRAPOS is designed to provide an efficient alternative for SHA3 as used in
the post-quantum asymmetric cryptographic algorithms KYBER and DILITHIUM

on platforms where hardware acceleration for multiplication in Fp is available,
where either p = 3329 (for KYBER) or p = 8380417 (for DILITHIUM).

This thesis investigates the security of ATRAPOS against algebraic attacks us-
ing Gröbner basis techniques. To this end, we model the ATRAPOS permutations
using sparse systems of polynomials. The complexity of algebraic attacks is de-
termined by a quantity called the “ideal degree” of the ideal generated by these
polynomials. We find that the top homogeneous parts of the polynomials cor-
responding to a single round of ATRAPOS form a so-called “regular sequence” of
quadratic polynomials. This property allows us to compute the ideal degree for
any number of rounds. Ultimately, we estimate that algebraic attacks against
ATRAPOS require 2ω`R field operations in Fp (additions and multiplications),
where 2 ≤ ω ≤ 3 is the matrix multiplication exponent, ` ≥ 3 is a quantity
that depends on p, and R is the number of rounds. Based on this estimate, we
determine that at least R= 4 (for KYBER) or R= 10 (for DILITHIUM) rounds are
needed to obtain 128 bits of security against algebraic attacks. Findings from
small-scale experiments are consistent with this theorized complexity.
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Notation

K Arbitrary field
Fp Finite field of size p
V ⊕W ,
⊕

i Vi Direct sum (Definition 1)
Q= V/W Quotient space of V modulo W (Definition 2)
[v]Q, [v] Equivalence class of v in the quotient space Q (Definition 2)
R= K[x1, . . . , xn] Polynomial ring (Definition 4)
ftop Top homogeneous part of f (Definition 6)
sqfree (xα) Square-free part of xα (Definition 8)
SF K-vector space generated by square-free monomials (Definition 8)
f= ( f1, . . . , fs) Polynomial sequence (Definition 10)
g ◦ f Composition of polynomial sequences (Definition 11)
f(i) i-th iteration of the polynomial sequence f (Definition 11)
V ( f1, . . . , fs) Affine variety of f1, . . . , fs (Definition 13)
I,J Ideal (Definition 15)
〈 f1, . . . , fs〉 Ideal generated by f1, . . . , fs (Lemma 17)
dI Ideal degree of I (Definition 23)
∼= K-vector space or K-algebra isomorphism (Definition 26)
LM ( f ) Leading monomial of f (Definition 35)
LT ( f ) Leading term of f (Definition 35)
LT (I) Leading term ideal of I (Definition 37)
ω Matrix multiplication exponent (see discussion below Proposition 46)
HSR/I (t) Hilbert series of R/I (Definition 52)
` Width of the 2D ATRAPOS state representation (Section 3.1)
n Unique m ∈ {1, . . . ,`} such that n−m ∈ `Z (Section 4.1)
ASF K-vector space generated by almost square-free monomials (Definition 80)
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Chapter 1

Introduction

1.1 Background

The security of many of the classical asymmetric cryptographic algorithms used
today (e.g. RSA and (elliptic curve) Diffie-Hellman) relies on problems which
are believed to be intractable for classical computers, but can be efficiently
solved by quantum computers. For example, recovering an RSA private key
from an RSA public key is as hard as computing the prime factorization of a
large integer [KL20, Section 9.2]. Performing RSA private key operations (such
as decrypting a ciphertext) is therefore at most as hard as prime factorization.
Similarly, the security of the Diffie-Hellman key exchange is based on the as-
sumption that the discrete log problem is hard. While prime factorization and
the discrete log problem are believed to be hard for classical computers, [Sho94]
shows that quantum computers could solve these problems efficiently: on a suf-
ficiently large quantum computer, these problems can be solved in time poly-
nomial in log N (when factoring an integer N) or log p (in case of the discrete
log problem on a group of order p).

In light of the threat of quantum computers to classical asymmetric cryp-
tography, researchers have been developing and analyzing cryptographic sys-
tem resistant to attacks by both classical and quantum computers, known as
post-quantum cryptography. In 2016, NIST issued a call for proposals for post-
quantum cryptography for two reasons [Nat16]. First, while no quantum com-
puter has been built yet that is powerful enough to break practical cryptographic
systems, there has been “noticeable progress in the development of quantum
computers . . . that have the potential to scale up to larger systems” [Nat16].
Second, the transition from classical cryptography to post-quantum cryptogra-
phy will likely require significant effort and time. Additionally, private informa-
tion that remains sensitive over a long period of time (e.g. medical data or state
secrets) may be susceptible to “harvest now, decrypt later” attacks. In these at-
tacks, information encrypted using keys established with classical asymmetric
cryptography is harvested with the intention to decrypt it at a later time when
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large-scale quantum computers have become accessible to the attacker. It is
therefore prudent to develop and standardize post-quantum cryptography long
before large-scale quantum computers are built.

Two of the post-quantum cryptography proposals that ended up being stan-
dardized by the U.S. National Institute of Standards and Technology (NIST) are
the key encapsulation mechanism KYBER [Ava+21] (standardized as ML-KEM
in FIPS 203 [Nat24b]) and the digital signature scheme DILITHIUM [Duc+21]
(standardized as ML-DSA in FIPS 204 [Nat24a]).

For completeness, a key encapsulation mechanism allows a sender to gen-
erate a random secret key, which will be encrypted using the public key of the
receiver (encapsulation). The receiver can decrypt this secret key using their
private key (decapsulation). The secret key can then be used for secure com-
munication using symmetric cryptography. A digital signature scheme allows a
signer to sign a message using their private key. A verifier can then verify the
signature using the public key of the signer.

Internally, KYBER and DILITHIUM use the SHA3 primitives SHA3-256, SHA3-
512, SHAKE-128, and SHAKE-256, all of which are based on the extendable-
output function (XOF) KECCAK [BDPV11b] and standardized by NIST in FIPS
202 [Nat15]. The primitives are used for several purposes, such as seed expan-
sion and hashing. As shown by the pqm4 framework for benchmarking post-
quantum cryptography on ARM Cortex-M4 CPUs [Kan+], KYBER and DILITHIUM

spend a significant amount of CPU cycles on the SHA3 primitives. For exam-
ple, during key generation (for both KYBER and DILITHIUM), typically 75% or
more of the total CPU cycles are spent on SHA3. For other operations, the cy-
cles spent on SHA3 range roughly between 60% and 80%. Thus, replacing the
SHA3 primitives in KYBER and DILITHIUM by a more efficient alternative could
result in a potentially significant speedup of KYBER and DILITHIUM. This insight
prompted the development of ATRAPOS-SPONGE.

1.2 Problem Statement

ATRAPOS-SPONGE [DMMØ25] is a novel XOF, which is currently still in develop-
ment and has not yet been published. It is designed to be an efficient replace-
ment for SHA3 in KYBER and DILITHIUM on platforms where hardware acceler-
ation for multiplication in Fp is available, where either p = 3329 (for KYBER)
or p = 8380417 (for DILITHIUM). Internally, KYBER and DILITHIUM operate on
elements of Fp. ATRAPOS-SPONGE accomodates this by natively operating on el-
ements of Fp, as opposed to the SHA3 primitives, which operates on bits. Like
the SHA3 primitives, ATRAPOS-SPONGE is based on the sponge construction. The
permutation used inside ATRAPOS-SPONGE is called ATRAPOS.
[BDPV11a] shows that sponge constructions are computationally indistin-

guishable from random oracles, assuming that they are instantiated with a ran-
dom permutation. It follows then, that the security of a real-world sponge con-
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struction largely depends on the security of the permutation used within the
sponge construction. In [BDPV11a], several structural distinguishers for permu-
tations are listed, which could potentially be used in attacks against sponge con-
structions. In this thesis, we will be interested in a structural distinguisher called
the constrained-input constrained-output (CICO) problem, which is strongly re-
lated to preimage attacks. The goal of this thesis is to analyze the complexity
of solving a specific CICO problem (defined in Section 3.2).

Since the ATRAPOS permutations are multivariate polynomials (as a function
of the digits of the input state), solving the CICO problem amounts to solving a
system of polynomial equations. We will see that the complexity of solving these
systems is determined by a quantity called the ideal degree. We will show that
the ideal degrees related to ATRAPOS are maximal with respect to the number
of multiplications performed. Moreover, we will show that solving the CICO
problem requires an estimated 22`R field operations in Fp, where ` is a fixed
parameter related to the state size (`= 17 for KYBER and `= 7 for DILITHIUM)
and R denotes the number of rounds. The complexity of the CICO problem can
therefore be efficiently increased by increasing the number of rounds (up to the
point where exhaustive search is the optimal attack).

1.3 Outline

The thesis is structured as follows. Chapter 2 covers the mathematical and
cryptographic underpinnings of the cryptanalysis of ATRAPOS. Chapter 3 gives
a specification of ATRAPOS-SPONGE, and defines the concrete CICO problem to
be analyzed in this thesis. In Chapter 4, we derive the ideal degree correspond-
ing to a single round of ATRAPOS. Chapter 5 extends these results to multiple
rounds of ATRAPOS and, using these results, we derive a minimum number of
rounds to achieve 128 bits of security (with respect to the CICO problem) when
ATRAPOS-SPONGE is used in KYBER and DILITHIUM. In Chapter 6, we compare
the theoretical complexity of the CICO problem to experimental results. Chap-
ter 7 discusses related work. We conclude in Chapter 8.
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Chapter 2

Preliminaries

2.1 Linear Algebra

We recall two concepts from linear algebra.
The first concept is the notion of direct sums. Decomposing a vector space

as a direct sum of subspaces may help us understand the vector space through
these subspaces.

Definition 1. Let K be a field, let V be a K-vector space, and let W1, W2 ⊆ V be
linear subspaces of V . The sum of W1 and W2 is the set

W1 +W2 = {w1 +w2 | w1 ∈W1, w2 ∈W2} .

We say that V is the direct sum of W1 and W2, denoted V =W1⊕W2, if W1∩W2 =
{0} and W1 +W2 = V .

The vector space V is finite dimensional if and only if both W1 and W2 are.
In this case, dimK V = dimK W1 + dimK W2.

The next concept concerns quotient spaces. Intuitively, quotient spaces are
obtained from a vector space by mapping similar vectors to the same element
in the quotient space.

Definition 2. Let K be a field, let V be a K-vector space, and let W ⊆ V be
a linear subspace. We define the equivalence relation ∼ by v ∼ w if and only
if v − w ∈ W . The equivalence class of v (with respect to this equivalence
relation) is the set [v] = {u ∈ V |v ∼ u}. We call the set V/W = {[v] | v ∈ V} of
equivalence classes the quotient space of V modulo W . This is again a K-vector
space with the operations α [v] = [αv] and [v] + [w] = [v +w] for all α ∈ K
and v, w ∈ V/W .

If V and W are finite-dimensional, then dimK (V/W ) = dimK V − dimK W .
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2.2 Polynomials

While polynomials are intuitively clear, there are some slight notational incon-
sistencies in the literature. To avoid confusion, we give an explicit definition of
monomials and polynomials.

Definition 3. Given n variables x1, . . . , xn, a monomial in x1, . . . , xn is any
product of the form xα1

1 · · · x
αn
n , where α1, . . . ,αn ∈ Z≥0 We abbreviate this as

xα, where α= (α1, . . . ,αn) ∈ Zn
≥0.

If the number n of variables is small, we sometimes write x , y, z, . . . instead
of x1, x2, x3, . . ..

Definition 4. Let K be a field. A polynomial in x1, . . . , xn with coefficients in
K is any finite K-linear combination of monomials f =

∑

α cαx
α. The set of all

such polynomials forms a ring, which we denote by K[x1, . . . , xn].
We call f univariate if n= 1 and multivariate if n> 1.
Every cαx

α in the finite sum above is called a term of f .

There are various ways to define degrees for monomials and polynomials.
The most useful notion to us is that of total degrees.

Definition 5. For a monomial xα the sum
∑n

k=1αk is called the total degree of
xα, denoted by |α|.

For a non-zero polynomial f =
∑

α cαx
α ∈ K[x1, . . . , xn], the total degree

of f (or simply the degree of f ) is defined as deg f = max {|α| | cα 6= 0}. We
define the total degree of the zero polynomial to be deg0= −∞.

The definition of the total degree allows us to define homogeneous polyno-
mials.

Definition 6. We call a polynomial f =
∑

α cαx
α ∈ K[x1, . . . , xn] homogeneous

of degree d ∈ Z≥0 if all monomials xα with cα 6= 0 have the same total degree
d. We call f inhomogeneous if it is not homogeneous.

If f =
∑

α cαx
α ∈ K[x1, . . . , xn] is an arbitrary polynomial and d ≥ 0, we call

fd =
∑

|α|=d cαx
α the homogeneous part of degree d of f . Using this notation,

we have f =
∑

d≥0 fd .
Given a polynomial f ∈ K[x1, . . . , xn], we define the top homogeneous

part of f as ftop = fdeg f if f 6= 0 and ftop = 0 if f = 0.

We sometimes use the terms “linear” and “quadratic” to designate polyno-
mials of degrees 1 and 2, respectively.

Example 7. Consider the polynomial ring R= K[x , y, z], and the polynomials
f = x yz + y2z + 1 and g = x + y + z.

The polynomial f is an inhomogeneous polynomial of degree 3. Its non-zero
homogeneous parts are ftop = f3 = x yz + y2z and f0 = 1.
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The polynomial g is a homogeneous polynomial of degree 1 (i.e. a linear
polynomial). Its single non-zero homogeneous part is given by gtop = g1 =
x + y + z. ◊

Any monomial xα is also a polynomial. In this case, both definitions of the
total degree agree, since degxα = |α|.

In this thesis, we will distinguish between monomials that contain expo-
nents strictly larger than 1 (e.g. x2 y or x3 yz5) and monomials whose expo-
nents are at most 1 (e.g. x yz or 1).

Definition 8. We say that a monomial xα is square-free if maxi αi ≤ 1.
Given a monomial xα, we define sqfree (xα) = xα

′
, where α′i = min {αi , 1}

for all 1≤ i ≤ n.
Given a polynomial ring R= K[x1, . . . , xn], we define the K-linear subspace

SF ⊆R by SF = spanK {xα ∈ R | xα is square-free}.
The notion of square-free monomials can be extended to terms cxα ∈ R

(where c 6= 0) by defining cxα to be square-free if xα is. Furthermore, we define
sqfree (cxα) = c · sqfree (xα).

A polynomial f =
∑

α cαx
α ∈ K[x1, . . . , xn] can be evaluated at any point

(a1, . . . , an) ∈ Kn by replacing each x i by ai . Since K is a field, this yields a
well-defined expression. The next definition formalizes this concept.

Definition 9. Let K be a field. Every polynomial f =
∑

α cαx
α in K[x1, . . . , xn]

induces a polynomial function Kn→ K given by

f (a1, . . . , an) =
∑

α

cαaα1
1 · · · a

αn
n .

We stress that the polynomial itself is a formal object. For example, let f1 = 0
and f2 = x2 + x be polynomials in F2[x]. Although f1 and f2 induce the same
function Kn→ K , a 7→ 0, they are distinct as polynomials, since the coefficients
of their terms are different.

Next, we introduce the notion of polynomial sequences.

Definition 10. Let K be a field and let R= K[x1, . . . , xn] be a polynomial ring.
A vector f= ( f1, . . . , fs) ∈Rs (with s ≥ 1) is called a polynomial sequence.

For every α= (α1, . . . ,αs) ∈ Zs
≥0, we define fα = f α1

1 · · · f
αs

s .

Polynomials and polynomial sequences can be composed to form new poly-
nomials or polynomial sequences.

Definition 11. Let K be a field, let R= K[x1, . . . , xn], and let f= ( f1, . . . , fn) ∈
Rn. For a polynomial g =

∑

α cαx
α ∈R we define the composition g ◦ f to be

g ◦ f= g(f) =
∑

α

cαf
α ∈R.
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Given g= (g1, . . . , gs) ∈Rs, we define

g ◦ f= (g1 ◦ f, . . . , gs ◦ f) ∈Rs.

For all i ≥ 0, the i-th iteration of f is defined as the composition

f(i) = f ◦ · · · ◦ f
︸ ︷︷ ︸

i times

.

We write f (i)j for the j-th component of f(i).

2.3 Varieties and Ideals

In this thesis, we will be interested in the systems of polynomial equations that
correspond to ATRAPOS (defined in Chapter 3). This section and the following
sections discuss techniques to solve polynomial systems.

In general, a polynomial system has the following form.

Definition 12. Let K be a field and K[x1, . . . , xn] a polynomial ring. A polyno-
mial system is a system of equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

(2.1)

where f1, . . . , fs are polynomials in K[x1, . . . , xn].

We call Kn = {(a1, . . . , an) | a1, . . . , an ∈ K} the affine space over K . A point
(a1, . . . , an) in this space is called a solution of the polynomial system (2.1) if
fi(a1, . . . , an) = 0 for all 1≤ i ≤ s. The set of all solutions is often referred to as
the affine variety, as formalized in the following definition.

Definition 13. Let K be a field and let f1, . . . , fs ∈ K[x1, . . . , xn] be polynomials.
We call the set

V ( f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all 1≤ i ≤ s}

the affine variety of f1, . . . , fs.

In general, a polynomial system may have zero solutions, finitely many so-
lutions, or infinitely many solutions. For example, the system f1 = y − x in
R[x , y] has infinitely many solutions of the form (a, a) ∈ R2, while the system
f1 = 1 has no solutions.

The following example demonstrates that the number of solutions may de-
pend on the field over which the polynomials are defined.
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Example 14. Consider the system in the variables x , y, z defined by

x2 − y = 0

z2 − 2= 0
(2.2)

If K = R, the affine variety V
�

x2 − y, z2 − 2
�

consists of the two parabola
��

x , x2,
p

2
�

∈ R3 | x ∈ R
	

and
��

x , x2,−
p

2
�

∈ R3 | x ∈ R
	

. In this case, the
system has infinitely many solutions.

If K =Q, however, system (2.2) has no solutions, since there exists no z ∈Q
such that z2 =

p
2.

Finally, if K = F2, it can be seen that

V
�

x2 − y, z2 − 2
�

= {(0,0, 0) , (1,1, 0)} ,

showing that the polynomial system has finitely many solutions. ◊

Our next topic of study is that of ideals. As it will turn out, there is a close
relation between affine varieties and ideals.

Definition 15. Let K be a field and let I be a subset of R = K[x1, . . . , xn]. We
say that I is an ideal if the following properties hold:

1. 0 ∈ I.

2. If f , g ∈ I, then f + g ∈ I.

3. If f ∈ I and h ∈R, then hf ∈ I.

We call I ⊆R a proper ideal of R if I 6=R.

Remark 16. It follows directly from Definition 15 that an ideal I ⊆R is proper
if and only if 1 /∈ I.

Trivial examples of ideals in R = K[x1, . . . , xn] are the zero ideal I = {0}
and the polynomial ring R itself. The latter is not a proper ideal of R.

As another example, let f be an arbitrary polynomial in R = K[x1, . . . , xn]
and consider the set I = {hf | h ∈R}. It is readily verified that this is an ideal,
which we denote by I = 〈 f 〉. This construction can be extended to multiple
polynomials as follows.

Lemma 17. Let K be a field and let f1, . . . , fs be polynomials inR= K[x1, . . . , xn].
The set

〈 f1, . . . , fs〉=

¨ s
∑

k=1

hk fk | h1, . . . , hs ∈R
«

is an ideal.

Proofs of Lemma 17 can be found in many introductory algebra books, see
e.g. [CLO15, §1.4, Lemma 3]. Nevertheless, we include a proof here to famil-
iarize the reader with the basic manipulations of ideals.
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Proof of Lemma 17. We verify that 〈 f1, . . . , fs〉 satisfies the properties listed in
Definition 15. By setting h1 = · · · = hs = 0, we see that 0 ∈ 〈 f1, . . . , fs〉. Next,
suppose that f , g ∈ 〈 f1, . . . , fs〉. Then there exist h1, . . . , hs and h′1, . . . , h′s, all in
R, such that f =

∑s
k=1 hk fk and g =

∑s
k=1 h′k fk. It follows that

f + g =
s
∑

k=1

hk fk +
s
∑

k=1

h′k fk =
s
∑

k=1

�

hk + h′k
�

fk ∈ 〈 f1, . . . , fs〉 .

Finally, suppose that f =
∑s

k=1 hk fk ∈ 〈 f1, . . . , fs〉 and g ∈ R. Then g f =
g
∑s

k=1 hk fk =
∑s

k=1 (ghk) fk ∈ 〈 f1, . . . , fs〉. Since 〈 f1, . . . , fs〉 satisfies properties
1-3 of Definition 15, it is an ideal.

The set 〈 f1, . . . , fs〉 is often called the ideal generated by f1, . . . , fs. Alter-
natively, we say that f1, . . . , fs is a basis of 〈 f1, . . . , fs〉.

It is often possible to study an ideal by considering a basis that generates
it. This is similar to how vector space bases in linear algebra often characterize
vector spaces. Unlike the bases encountered in linear algebra, we do not require
the elements of an ideal basis to be independent in some sense. Moreover,
different ideal bases may have different cardinalities. This is illustrated by the
next example.

Example 18. Let f1 = x3 − y , f2 = x2 + y , and f3 = y be polynomials in
K[x , y] and consider the ideal I = 〈 f1, f2, f3〉. It is easily verified that adding
(a multiple of) a generator to another generator does not change the resulting
ideal, so I = 〈 f1 + f3, f2 − f3, f3〉 =




x3, x2, y
�

. We now see that one of the
generators, x3, is a multiple of another, x2. Thus, I =




x2, y
�

. ◊

The following lemma is a first step in understanding the relation between
the affine variety V ( f1, . . . , fs) of f1, . . . , fs and the ideal 〈 f1, . . . , fs〉 generated
by these polynomials.

Lemma 19. Let K be a field and let f1, . . . , fs be polynomials in K[x1, . . . , xn].
Then (a1, . . . , an) ∈ V ( f1, . . . , fs) if and only if f (a1, . . . , an) = 0 for all f ∈
〈 f1, . . . , fs〉.

Proof. Let (a1, . . . , an) ∈ V ( f1, . . . , fs). Any f ∈ 〈 f1, . . . , fs〉 is of the form
∑s

k=1 hk fk,
so

f (a1, . . . , an) =
s
∑

k=1

hk(a1, . . . , an) · fk(a1, . . . , an) = 0.

Conversely, suppose that f (a1, . . . , an) = 0 for all f ∈ 〈 f1, . . . , fs〉. Then
f1, . . . , fs ∈ 〈 f1, . . . , fs〉 implies (a1, . . . , an) ∈ V ( f1, . . . , fs).

In Example 18 we saw that f1 = x3 − y, f2 = x2 + y, f3 = y and g1 =
x2, g2 = y are two sets of polynomials that generate the same ideal. A simple
computation shows that the affine varieties of these sets are the same as well,
since both varieties are equal to {(0,0)} ⊆ K2. An immediate consequence of
Lemma 19 is that this principle holds in general.
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Lemma 20. Let K be a field and let f1, . . . , fs and g1, . . . , gt be polynomials in
K[x1, . . . , xn]. If f1, . . . , fs and g1, . . . , gt generate the same ideal, i.e. 〈 f1, . . . , fs〉=
〈g1, . . . , gt〉, then V ( f1, . . . , fs) = V (g1, . . . , gt).

Proof. Let I = 〈 f1, . . . , fs〉= 〈g1, . . . , gt〉. Then

(a1, . . . , an) ∈ V ( f1, . . . , fs)⇔ f (a1, . . . , an) = 0 for all f ∈ I
⇔ (a1, . . . , an) ∈ V (g1, . . . , gs)

Lemma 20 shows that, given a variety V ( f1, . . . , fs), we may replace the
polynomial system f1(x1, . . . , xn) = · · ·= fs(x1, . . . , xn) = 0 by another (possibly
easier to solve) system g1(x1, . . . , xn) = · · · = gt(x1, . . . , xn) = 0, as long as the
polynomials in both systems generate the same ideal. This prompts us to look
for an “optimal” basis g1, . . . , gt , i.e. a basis that allows us to easily solve the
polynomial system. As we will see later, Gröbner bases are exactly the kinds of
bases we are looking for.

We conclude this section by generalizing affine varieties of finite sets f1, . . . , fs
to affine varieties of arbitrary ideals I.

Definition 21. Let K be a field and let I be an ideal of the polynomial ring
K[x1, . . . , xn]. The affine variety of I is the set

V (I) = {(a1, . . . , an) | f (a1, . . . , an) = 0 for all f ∈ I} .

If I = 〈 f1, . . . , fs〉, then Lemma 19 implies V (I) = V ( f1, . . . , fs).

Remark 22. Although we will not prove it here, the Hilbert Basis Theorem states
that every ideal I ⊆ R = K[x1, . . . , xn] is finitely generated [CLO15]. Con-
sequently, for every ideal I ⊆ R there exist f1, . . . , fs ∈ R such that V (I) =
V ( f1, . . . , fs).

The next definition plays a key role in reasoning about the complexity of
solving polynomial systems.

Definition 23. Let K be a field. Given an ideal I in the polynomial ring R =
K[x1, . . . , xn], we define the ideal degree of I to be the vector space dimension
dI = dimK (R/I).

We call I a zero-dimensional ideal if dI <∞.

An example of a zero-dimensional ideal is I =



x2, y
�

⊆ C[x , y], since
C[x , y]/I = {[1] , [x]} is finite dimensional over C. The ideal J = 〈y〉 ⊆
C[x , y] is not zero-dimensional, since C[x , y]/J =

�

[1] , [x] ,
�

x2
�

, . . .
	

.
The ideal degree of an ideal I is related to the size of its affine variety V (I).

Proposition 24. Let K be a field and I ⊆ K[x1, . . . , xn] an ideal. If I is zero-
dimensional, then the affine variety V (I) is finite and contains at most dI points.

Conversely, if V (I) is finite and K is algebraically closed, then I is zero-
dimensional.
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Proof. Follows from [CLO15, §5.3, Theorem 6] and [CLO15, §5.3, Proposi-
tion 7].

Proposition 24 explains where zero-dimensional ideals derive their name
from: if I is a zero-dimensional ideal, then V (I) is finite and forms a so called
“zero-dimensional” variety. (See [CLO15, Chapter 5] for a formal study on as-
signing dimensions to varieties.)

An upper bound for dI is given by the Bézout bound.

Proposition 25 (Bézout bound, [KLR24, Theorem 1]). Let K be a field and let
I = 〈 f1, . . . , fn〉 be a zero-dimensional ideal of K[x1, . . . , xn]. Then,

dI ≤
n
∏

k=1

deg fk.

2.4 Algebras over Fields

Generally, rings allow for two operations: addition and multiplication. Certain
rings, such as polynomial rings, have extra structure and allow for scalar multi-
plication by elements of a field K . For example, let f =

∑

α cαx
α be a polynomial

in a polynomial ring K[x1, . . . , xn]. Since every k ∈ K can be interpreted as a
constant polynomial k ∈ K[x1, . . . , xn], the multiplication k f of f by the scalar
k is well-defined. The following definition generalizes this principle.

Definition 26. Let A be a set and K be a field. We call A a K-algebra if A is a
ring which contains K as a subring.

For K-algebras A,B, we call ϕ : A → B a homomorphism of K-algebras
(or a K-algebra homomorphism) if it is a ring homomorphism that maps every
k ∈ K to k. We call ϕ a K-algebra isomorphism if it is bijective. We say that ϕ
is a K-algebra automorphism if A= B and ϕ is a K-algebra isomorphism.

If a K-algebra isomorphism ϕ : A → B exists, we say that A and B are
isomorphic as K-algebras. We denote this using “A∼= B as K-algebras”.

Examples of K-algebras are the polynomial ring R = K[x1, . . . , xn] and the
quotient space R/I, where I is an ideal in K[x1, . . . , xn]. The canonical ho-
momorphism can: R → R/I which maps f to its equivalence class [ f ] is an
example of a surjective K-algebra homomorphism.

The next proposition is the K-algebra version of the First Isomorphism The-
orem for groups, rings, etc. (see Figure 2.1).

Proposition 27 (The First Isomorphism Theorem for K-Algebras). Let φ : A→
B be a homomorphism of K-algebras. Then A/Kerφ ∼= Imφ as K-algebras.

An explicit isomorphism is given by ϕ : A/Kerφ → Imφ, defined by [a] 7→
φ(a).
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Proof. By [DF04, Chapter 7, Theorem 7], the mapping [a] 7→ φ(a) is a well-
defined ring isomorphism. Since it preserves scalar multiplication, it is also a
K-algebra isomorphism.

A Imφ

A/Kerφ

can

φ

ϕ

∼

Figure 2.1: The First Isomorphism Theorem for K-Algebras. Here, can: R →
R/I denotes the canonical homomorphism mapping f to its equivalence class
[ f ].

2.5 Monomial Orderings

When computing with polynomials, it is often advantageous to define an order-
ing on its terms. Consider, for example, the process of dividing f = x3 + 1 ∈
K[x] by g = x2 + 2 ∈ K[x]. Both polynomials are univariate, so there exist
unique q, r ∈ K[x] such that we can write f = qg + r, where either r = 0 or
deg r < deg f . The “leading term” x3 of f can be canceled by subtracting x · g,
since f − x · g = x3 + 1−

�

x3 + 2x
�

= −2x + 1. Note that deg (−2x + 1) = 1<
deg g, so q = x and r = −2x + 1.

In this example, we implicitly used the ordering 1 < x < x2 < · · · and
ordered the terms of polynomials in descending order. In terms of this ordering,
the polynomial division algorithm systematically cancels the highest order term
until a polynomial r is found such that the greatest term of g does not divide the
greatest term of r. If instead of canceling highest order terms, we try to cancel
arbitrary terms of f , we may not be able to find q and r. This shows that, even
in the univariate case, ordering polynomial terms is of great importance.

This notion of ordering the terms of a polynomial can be generalized to the
multivariate case. We make two remarks about these generalized orderings.
First, note that after collecting terms, a polynomial f ∈ K[x1, . . . , xn] can be
written as f =

∑

α cαx
α, so an ordering xα(1) > xα(2) > · · · > xα(m) on the

monomials of f automatically yields an ordering cα(1)x
α(1) > cα(2)x

α(2) > · · · >
cα(m)x

α(m) on the (non-zero) terms of f . We are therefore only concerned with
monomial orderings.

Second, every monomial xα ∈ K[x1, . . . , xn] is identified by its n-tuple of
exponents α ∈ Zn

≥0. Any ordering on Zn
≥0 therefore induces an ordering on the

monomials of K[x1, . . . , xn] and vice versa.
Not every ordering on Zn

≥0 yields a useful ordering > on the monomials of
K[x1, . . . , xn]. A first desirable property of> is that for every two distinct mono-
mials xα and xβ we have either xα > xβ or xβ > xα, so that every polynomial
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in K[x1, . . . , xn] can be written in a unique order. A second desirable property
is that xα > xβ implies xαxγ > xβxγ. This ensures that the “leading term” of a
polynomial f changes predictably if we multiply f by another polynomial g.

The requirements above are reformulated by Definition 28. Before present-
ing this definition, we address two points. First, recall that a partial ordering ≥
on an arbitrary set X is a relation ≥ which satisfies the following properties:

• Reflexivity: for all x ∈ X , x ≥ x .

• Transitivity: for all x , y, z ∈ X , x ≥ y and y ≥ z implies x ≥ z.

• Anti-symmetry: for all x , y ∈ X , x ≥ y and y ≥ x implies x = y .

Second, given a relation > on an arbitrary set X , we define the relation ≥ on X
by x ≥ y if and only if x > y or x = y for all x , y ∈ X .

Definition 28. A monomial ordering on K[x1, . . . , xn] is an ordering > on Zn
≥0

such that:

1. The relation ≥ on K[x1, . . . , xn] induced by > is a total ordering. That
is, ≥ is a partial ordering and for all α,β ∈ Zn

≥0, exactly one of α > β ,
α= β , and β > α holds.

2. If α,β ,γ ∈ Zn
≥0 with α > β , then α+ γ > β + γ.

3. > is a well-ordering. That is, for every non-empty subset S ⊆ Zn
≥0 there

exists α ∈ S such that β > α for all β ∈ Zn
≥0 \ {α}.

If > is a monomial ordering on Zn
≥0, we write xα > xβ if α > β .

Remark 29. Property 3 in Definition 28 is often necessary to guarantee termi-
nation of algorithms using monomial orderings.

Next, we define two common monomial orderings.

Definition 30 (Lexicographic Ordering). Letα= (α1, . . . ,αn) and β = (β1, . . . ,βn)
be elements of Zn

≥0. The lexicographic ordering on Zn
≥0 is defined by α >lex β

if the leftmost non-zero entry of α− β is strictly positive.

Definition 31 (Degree-Reverse-Lexicographic Ordering). Let α = (α1, . . . ,αn)
and β = (β1, . . . ,βn) be elements of Zn

≥0. The degree-reverse-lexicographic
(DRL) ordering on Zn

≥0 is defined by α >drl β if degα > degβ or degα= degβ
and the rightmost non-zero entry of α− β is strictly negative.

The following example compares the lexicographic and DRL orderings.

Example 32. Let K be a field and consider the polynomial ring K[x , y, z, w].
For the lexicographic ordering we find:

• x >lex y >lex z >lex w>lex 1,
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• x >lex y2 >lex z3 >lex w4,

• x3 >lex x2 >lex x ,

• xw>lex yz,

while for the DRL ordering we find

• x >drl y >drl z >drl w>drl 1,

• w4 >drl z3 >drl y2 >drl x ,

• x3 >drl x2 >drl x ,

• yz >drl xw.

◊

Remark 33. The DRL ordering may seem somewhat artificial at first, but often
leads to more efficient computations.

Some monomial orderings “preserve degrees” in the following sense.

Definition 34. Let K be a field. We call a monomial ordering> on K[x1, . . . , xn]
a graded ordering if, for all α,β ∈ Zn

≥0, we have α > β whenever |α|> |β |.

It follows directly from Definition 31 and Example 32 that the DRL ordering
is a graded ordering, while the lexicographic ordering is not.

Given a monomial ordering, we can finally properly define the notion of
leading monomials and leading terms.

Definition 35. Let K be a field and fix a monomial ordering> on K[x1, . . . , xn].
Let f =
∑

α cαx
α be a non-zero polynomial in K[x1, . . . , xn]. The leading mono-

mial of f is the monomial xα such that α is maximal (with respect to >) among
all α′ ∈ Zn

≥0 with cα′ 6= 0. The leading monomial is denoted by LM ( f ) = xα.
If LM ( f ) = xα, we call cαx

α the leading term of f , denoted by LT ( f ) =
cαx

α.

Remark 36. Some authors write LM> ( f ) and LT> ( f ) for the leading monomial
and leading term of f to emphasize the dependence on the monomial ordering
>. In practice, the monomial ordering is clear from the context, and we choose
to drop the subscript > from the notation.

As we saw in the polynomial division example at the beginning of this sec-
tion, leading terms play an important role in polynomial computations. Like-
wise, the leading terms of all polynomials in an ideal I ⊆ K[x1, . . . , xn] play an
important role when trying to understand the ideal.
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Definition 37. Let K be a field and fix a monomial ordering> on the polynomial
ring R= K[x1, . . . , xn]. For every ideal I ⊆R, we define LT (I) to be the set

LT (I) = {LT ( f ) | f ∈ I \ {0}} .

The leading term ideal of I is the ideal 〈LT (I)〉 generated by LT (I). Elements
of this ideal are finite sums of the form

∑m
i=1 hi LT ( fi), where h1, . . . , hm ∈ R

and f1, . . . , fm ∈ I \ {0}.

There is a close relation between the quotient space R/I and the leading
term ideal 〈LT (I)〉.

Lemma 38 ([CLO15, §5.3, Proposition 4]). Let K be a field and define R =
K[x1, . . . , xn]. Fix a monomial ordering on R. For every ideal I ⊆ K[x1, . . . , xn],
R/I is isomorphic as a K-vector space to S = spanK {xα ∈R | xα /∈ 〈LT (I)〉}.

If I = 〈 f1, . . . , fs〉, then LT ( fi) ∈ LT (I) ⊆ 〈LT (I)〉 for all 1 ≤ i ≤ s. Since
〈LT (I)〉 is an ideal, it follows that

〈LT ( f1), . . . , LT ( fs)〉 ⊆ 〈LT (I)〉 . (2.3)

Perhaps surprisingly, the reverse inclusion does not hold in general.

Example 39. Let K be a field and let> be a monomial ordering on K[x , y] such
that x > y . Define I = 〈 f1, f2〉 ⊆ K[x , y], where f1 = x + y and f2 = −x . Then
f1 + f2 = y , so y = LT ( f1 + f2) ∈ 〈LT (I)〉. However, 〈LT ( f1), LT ( f2)〉 = 〈x〉, so
y /∈ 〈LT ( f1), LT ( f2)〉. ◊

2.6 Gröbner Bases

Sets for which the inclusion in Equation (2.3) is in fact an equality are called
Gröbner bases.

Definition 40. Let K be a field and fix a monomial ordering> on K[x1, . . . , xn].
Let I ⊆ K[x1, . . . , xn] be an ideal. We say that a subset G = {g1, . . . , gt} of I is
a Gröbner basis of I (with respect to >) if 〈LT (g1), . . . , LT (gt)〉= 〈LT (I)〉.

Note that Definition 40 does not require that G is a basis of I. It turns out
that this is already encoded by the fact that it is a Gröbner basis.

Proposition 41 ([CLO15, §2.5, Corollary 6]). Let K be a field and fix a monomial
ordering > on K[x1, . . . , xn]. Every ideal I ⊆ K[x1, . . . , xn] has a Gröbner basis
with respect to >. Moreover, every Gröbner basis of I is a basis of I.

Gröbner bases can be used to solve several problems related to ideals. One of
these problems is the ideal membership problem: given polynomials f , f1, . . . , fs ∈
K[x1, . . . , xn], is f ∈ I = 〈 f1, . . . , fs〉? This problem can be solved by computing
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a Gröbner basis G = {g1, . . . , gt} of I (with respect to an arbitrary monomial
ordering). The remainder on division of f by G using a generalization of the
usual polynomial division algorithm is zero if and only if f ∈ I, see e.g. [CLO15,
Chapter 2].

Another application of Gröbner bases is solving polynomial systems. This
will be the topic of the next sections.

Remark 42. We note that various algorithms exist to compute a Gröbner basis
of I = 〈 f1, . . . , fs〉 with respect to a monomial ordering >, such as Buchberger’s
algorithm [CLO15, §2.7], or the more performant F4 [Fau99] and F5 [Fau02]
algorithms.

Additionally, the basis conversion algorithm presented in [FGLM93], known
as the FGLM algorithm, converts a Gröbner basis for a zero-dimensional ideal
with respect to a monomial ordering >1 to a Gröbner basis with respect to
another monomial ordering >2.

2.7 Elimination Theory

Let I = 〈 f1, . . . , fs〉 be an ideal in K[x1, . . . , xn]. By Proposition 41, there exists
a Gröbner basis G = {g1, . . . , gt} with respect to any monomial ordering >. We
observed before that V ( f1, . . . , fs) = V (g1, . . . , gt) (Lemma 20). If G is a Gröbner
basis with respect to the lexicographic ordering, we can compute V (g1, . . . , gt)
using elimination theory.

We start by defining the elimination ideals of an ideal I ⊆ K[x1, . . . , xn].
Intuitively, these elimination ideals correspond to polynomial systems whose
affine variety is a superset of V (g1, . . . , gt).

Definition 43. Let K be a field and let I ⊆ K[x1, . . . , xn] be an ideal. For all
0≤ l ≤ n, the ideal Il ⊆ K[x l+1, . . . , xn] defined by

Il = I ∩ K[x l+1, . . . , xn]

is called the l-th elimination ideal of I.

We leave it as an exercise to the reader to verify that for all 0 ≤ l ≤ n, Il is
indeed an ideal.

For Gröbner bases with respect to the lexicographic ordering, we can explic-
itly compute a basis of Il .

Theorem 44 (The Elimination Theorem, [CLO15, §3.1, Theorem 2]). Let K be
a field, let I be an ideal of K[x1, . . . , xn], and let G = {g1, . . . , gt} be a Gröbner
basis of I with respect to the lexicographic ordering. Then, for all 0 ≤ l ≤ n,
Gl = G ∩ K[x l+1, . . . , xn] is a Gröbner basis of the l-th elimination ideal Il .

We now present a crude algorithm to compute V (g1, . . . , gt) given a Gröb-
ner basis of I ⊆ K[x1, . . . , xn] with respect to the lexicographic ordering. The
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algorithm uses the Elimination Theorem to reduce the problem of computing
V (g1, . . . , gt) to the problem of univariate root finding.

For simplicity, we assume that the field K is finite.
Observe that the elimination ideals (viewed as ideals of K[x1, . . . , xn]) form

the following ascending chain:

;= In ⊆ In−1 ⊆ · · · ⊆ I0 = I.

Their affine varieties therefore form a descending chain:

Kn = V (In) ⊇ V (In−1) ⊇ · · · ⊇ V (I0) = V (I).

We know that V (In) = Kn and compute V (In−1), . . . , V (I0) inductively.
Having computed V (Il) for some 0 < l < n, we observe that Gl−1 = G ∩

K[x l , . . . , xn] is a basis of V (Il−1) consisting of polynomials in K[x l , . . . , xn]. For
every (al+1, . . . , an) ∈ V (Il), the substitution (x l+1, . . . , xn) = (al+1, . . . , an) in
Gl−1 yields a system of univariate polynomials in K[x l]. The affine variety V (Il)
is then simply the union of the solution sets corresponding to every possible
substitution.

At some point, the algorithm has computed V (I0) = V (I). By assumption,
I = 〈g1, . . . , gt〉, so V (g1, . . . , gt) = V (I0).

Remark 45. The algorithm presented here can be adapted to the case where K
is infinite as well. Some care should be taken, since the affine varieties are not
guaranteed to be finite.

2.8 Solving Polynomial Systems

The algorithm presented in the previous section provides a method to com-
pute the affine variety V ( f1, . . . , fs) of arbitrary polynomial systems f1, . . . , fs:
first compute a Gröbner basis G = {g1, . . . , gt} of I = 〈 f1, . . . , fs〉 with respect
to the lexicographic ordering and then use the algorithm above to compute
V ( f1, . . . , fs) = V (g1, . . . , gt).

In practice, directly computing a Gröbner basis with respect to the lexi-
cographic ordering is computationally expensive (both in time and memory).
Polynomial systems corresponding to cryptographic problems often yield a zero-
dimensional ideal I ⊆ K[x1, . . . , xn]. For these ideals it is usually more efficient
to compute a DRL Gröbner basis first and then use a basis conversion algorithm
to obtain a lexicographic Gröbner basis. State-of-the-art algorithms therefore
use the following approach to compute V (I) [KLR24]:

1. Compute a Gröbner basis of I with respect to the DRL ordering, using
e.g. the F4 [Fau99] or F5 [Fau02] algorithm.

2. Convert the DRL Gröbner basis to a Gröbner basis with respect to the
lexicographic ordering, using a basis conversion algorithm such as the
FGLM algorithm [FGLM93].
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3. Solve for one or more solutions in V (I) using univariate polynomial solv-
ing, as described in Section 2.7.

While indirectly computing a lexicographic Gröbner basis from a DRL Gröb-
ner basis is often more efficient than directly computing a lexicographic Gröbner
basis, it should be noted that the indirect computation is still computationally
expensive. This is what ultimately protects cryptographic primitives against al-
gebraic attacks.

In Chapter 6 we will experimentally determine that, for the polynomial sys-
tems corresponding to ATRAPOS, step 1 is negligible compared to the FGLM step.
We will therefore not discuss the time complexity of this step. (The interested
reader is referred to e.g. [KLR24] for a discussion on the time complexity of step
1.) Moreover, Remark 47 at the end of this section shows that the asymptotic
time complexity of step 2 dominates the asymptotic time complexity of step 3.
Hence, we will analyze the security of ATRAPOS against algebraic attacks by an-
alyzing the complexity of the FGLM algorithm in step 2. We will also briefly
discuss this choice in Subsection 3.2.1.

An upper bound on the time complexity of the FGLM algorithm is given by
the following proposition.

Proposition 46 ([FGLM93, Proposition 5.1]). Let K be a field and let I be a zero-
dimensional ideal of R= K[x1, . . . , xn]. If I has ideal degree dI =R/I, then the
FGLM algorithm has a worst-case time complexity of O

�

ndωI
�

field operations in K
(i.e. addition and multiplication), where 2 ≤ ω ≤ 3 is the matrix multiplication
exponent (see below).

In this thesis, we define the matrix multiplication exponent 2 ≤ ω ≤ 3 in
Proposition 46 such that an attacker can multiply two dense n×n matrices using
O(nω) field operations in K . Common choices includeω= 3 (naïve algorithm),
ω= log2 7≈ 2.81 (Strassen algorithm) [Str69], ω≈ 2.37 [WXXZ24], orω= 2
(lower bound) [KLR24].

While the algorithm in [WXXZ24] has a lower asymptotic time complexity
than Strassen multiplication [Str69], it is mainly of theoretical interest, since
the hidden multiplicative constant in the O notation is prohibitively large for
practical implementations. In contrast, Strassen multiplication has a hidden
multiplicative constant of 4.7 [Str69]. Nevertheless, in many cases, the con-
servative choice ω= 2 is more reasonable to account for algorithms exploiting
sparsity in the involved matrices [FGHR14; FM11].

Note that the bound in Proposition 46 is an upper bound for the time com-
plexity of the FGLM step. Since the security of ATRAPOS against algebraic attacks
depends on this step being hard, we would ideally have a lower bound for the
time complexity instead. However, no such practical lower bounds are known.
In many practical realizations of the FGLM algorithm (or variants thereof), the
hidden multiplicative constant inO

�

ndωI
�

is reasonably close to unity, compared
to dωI . It is common to estimate the time complexity of FGLM (with respect to
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field operations) using CFGLM = ndωI [Alb+19], even when takingω= 2. This is
not a realistic assumption if the involved matrices are dense, but this estimate
serves as a security margin to account for attacks that exploit sparsity of the
matrices [KLR24].

The lexicographic Gröbner basis obtained by FGLM can be used to find all
solutions in the variety of I. In cases where finding a single solution suffices, it
may not always be necessary to compute the entire lexicographic Gröbner basis.
In these cases, the conservative estimate CFGLM = dωI may be more appropriate.

Remark 47. There exist practical algorithms to perform univariate polynomial
solving (step 3 of the algorithm outlined above) using O

�

d1.815
�

field opera-
tions, where d ≤ dI [KLR24]. This bound is (asymptotically) lower than the
bound for the FGLM algorithm (Proposition 46). It is therefore justified to argue
only about the time complexity of steps 1 and 2, when analyzing the complexity
of the algorithm above.

2.9 Homogeneous Ideals

In this section, we study ideals that are generated by homogeneous polynomials.

Definition 48. Let K be a field. We call an ideal I of K[x1, . . . , xn] homoge-
neous if it is generated by a basis of homogeneous polynomials. That is, I is
homogeneous if and only if there exist homogeneous polynomials f1, . . . , fs ∈
K[x1, . . . , xn] such that I = 〈 f1, . . . , fs〉.

A trivial example of a homogeneous ideal in R = K[x1, . . . , xn] is R itself,
since R= 〈1〉.

Another example of a homogeneous ideal is I =



x + y, y2
�

⊆R. Although
I is a homogeneous ideal, it contains inhomogeneous polynomials, such as f =
x y2+ x+ y . In this case, the homogeneous components of f are x y2 and x+ y ,
which both belong to I.

The next lemma shows that every polynomial in a homogeneous ideal I can
be written as a sum of homogeneous polynomials in I.

Lemma 49. Let K be a field and let I ⊆ K[x1, . . . , xn] be a homogeneous ideal.
For each f ∈ K[x1, . . . , xn], I contains f if and only if I contains all homogeneous
components of f .

Proof. Follows from [CLO15, §8.3, Definition 1] and [CLO15, §8.3, Theorem 2].

Before we can fully appreciate the significance of Lemma 49, we have to
make a definition.

Definition 50. Let K be a field and let R = K[x1, . . . , xn]. For all m ≥ 0, we
define Im to be the set of homogeneous polynomials in I of degree m, together
with the zero vector.
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Every Im is a linear subspace of R. (For all m≥ 0, Im is not an ideal, unless
Im = {0}.)

Remark 51. In Section 2.7, the notation Im was used to denote the m-th elim-
ination ideal of I. In the remainder of this thesis, Im will refer to the vector
space defined in Definition 50 instead. This will also be clear from the context.

To verify that Im is a linear subspace of R, let m ≥ 0. The sum of two
polynomials in Rm is either zero or has degree m ≥ 0. Likewise, multiplying a
polynomial in Rm by a scalar in K results in a polynomial which is either zero or
has degree m ≥ 0. Since every Im contains the zero polynomial, and is closed
under addition and scalar multiplication, it is a linear subspace of R.

It follows from Lemma 49 that I = I0 + I1 + · · ·. Moreover, Ii ∩ I j = {0}
for all distinct i, j ≥ 0. Thus, I can be written as the infinite direct sum I =
⊕

m≥0 Im. As a special case, we can write R=
⊕

m≥0 Rm.
The decomposition of R and I into the subspaces R0,R1, . . . and I0,I1, . . .

will help us better understand the relations between I and R. For example, we
have

R/I =
�

⊕

m≥0

Rm

�Â�

⊕

m≥0

Im

�

=
⊕

m≥0

(Rm/Im) .

It now follows that dimK (Rm/Im) =
∑

m≥0 dimK (Rm/Im). A tool which helps
us understand the right-hand side of this equation is the Hilbert series.

Definition 52. Let K be a field, let R = K[x1, . . . , xn], and let I be a homoge-
neous ideal of R. The Hilbert series of R/I is the formal power series

HSR/I (t) =
∞
∑

m=0

dimK (Rm/Im) · tm.

From the discussion preceding Definition 52, it is clear that evaluating the
Hilbert series of R/I at t = 1 yields the ideal degree of I ⊆R:

HSR/I (1) =
∞
∑

m=0

dimK (Rm/Im) = dimK (R/I) = dI .

The subspaces Im can be explicitly described if we have a basis f1, . . . , fs for
I consisting of homogeneous polynomials of the same degree.

Lemma 53. Let K be a field and let f1, . . . , fs ∈ K[x1, . . . , xn] be homogeneous
polynomials of degree d. If I ⊆ K[x1, . . . , xn] is the ideal generated by f1, . . . , fs,
then

Im = spanK {x
α fi | 1≤ i ≤ s and degα= m− d}

for all m≥ 0. In particular,

I0 = I1 = · · ·= Id−1 = {0} .
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Proof. Let Sm = spanK {xα fi | 1≤ i ≤ s and degα= m− d} for all m ≥ 0. By
induction on m, we show that Im = Sm for all m ≥ 0. The base case m = 0 is
trivial, so assume that Im = Sm for some m≥ 0.

Since I is an ideal, every xα fi with degα= m+ 1− d is an element of I of
degree m+ 1 and therefore belongs to Im+1. It follows that Sm ⊆ Im+1.

To prove the reverse inclusion, let f ∈ Im+1. If f = 0, it is clear that f ∈
Sm+1, so suppose that f 6= 0. Then, there exist h1, . . . , hs ∈ K[x1, . . . , xn] such
that

f =
s
∑

i=1

hi fi =
s
∑

i=1

∑

j≥0

(hi) j fi =
∑

j≥0

s
∑

i=1

(hi) j fi ,

where (hi) j denotes the j-th degree homogeneous part of hi . For all j ≥ 0,
∑s

i=1 (hi) j fi is either the zero polynomial or a polynomial of degree j + d. We
know that deg f = m+1, so all terms with j+d 6= m+1 must vanish. Therefore,
f =
∑s

i=1 (hi)m+1−d fi . For all 1≤ i ≤ s, (hi)m+1−d is a (possibly empty) sum of
terms with degree (m+ 1− d), so f = (hi)m+1−d fi ∈ Sm+1. We conclude that
Im+1 ⊆ Sm.

2.10 Regular Sequences

In this section, we review the notion of regular sequences of polynomials. Regu-
lar sequences will play a key role when we extend the results for a single round
of ATRAPOS to multiple rounds of ATRAPOS.

Definition 54. Let K be a field, let R = K[x1, . . . , xn] be a polynomial ring,
and let I ⊆ R be an ideal. We call [ f ] ∈ R/I a non-zero-divisor for R/I if
[ f ] · [g] = 0 in R/I implies [g] = 0 for all [g] ∈R/I.

We say that the sequence f1, . . . , fs of polynomial in R is a regular se-
quence if 〈 f1, . . . , fs〉 6= R and if for all 1 ≤ i ≤ s, [ fi] is a non-zero-divisor
for R/ 〈 f1, . . . , fi−1〉.

Generally, whether the polynomials f1, . . . , fs ∈ R form a regular sequence
may depend on their order. The next lemma shows that the order is not impor-
tant if the polynomials are homogeneous.

Lemma 55. Let K be a field and let f1, . . . , fs in R = K[x1, . . . , xn] be homoge-
neous polynomials of degrees d1, . . . , ds. Then f1, . . . , fs is a regular sequence if and
only if for every permutation σ on {1, . . . , s}, fσ(1), . . . , fσ(s) is a regular sequence.

Proof. Follows from [KR05, Corollary 5.2.17].

The next lemma allows us to determine whether a sequence f1, . . . , fs of
homogeneous polynomials is a regular sequence, if we know the Hilbert series
of R/ 〈 f1, . . . , fs〉.
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Lemma 56 ([Sta78, Corollary 3.2]). Let K be a field and let f1, . . . , fs in R =
K[x1, . . . , xn] be homogeneous polynomials of degrees d1, . . . , ds. Then

HSR/〈 f1,..., fs〉 (t)≥
1

(1− t)n
·

s
∏

k=1

�

1− tdk
�

,

where equality holds if and only if f1, . . . , fs is a regular sequence. (We define
∑∞

m=0 am tm ≥
∑∞

m=0 bm tm if am ≥ bm for all m≥ 0.)

Lemma 56 lets us easily compute the ideal degree of an ideal generated by
a regular sequence of homogeneous polynomials.

Corollary 57. Let K be a field and let f1, . . . , fs be a regular sequence in R =
K[x1, . . . , xn] of homogeneous polynomials of degrees d1, . . . , ds. Then the ideal
I = 〈 f1, . . . , fs〉 has ideal degree d1 · · · ds.

Proof. By Lemma 56, the Hilbert series of R/I is HSR/I (t) =
∏n

i=1
1−tdi

1−t . Rec-

ognizing that, for all 1≤ i ≤ s, 1−tdi

1−t equals the geometric sum
∑di−1

j=0 t j , we find

that I has ideal degree HSR/I (1) =
∏n

i=1

�

∑di−1
j=0 1
�

= d1 · · · ds.

The following corollary shows how Lemma 56 implies that the variables
x1, . . . , xn ∈ K[x1, . . . , xn] form a regular sequence. It is not hard to derive the
same result using Definition 54 directly, and we leave it as an exercise for the
reader to do so.

Corollary 58. Let K be a field. The variables x1, . . . , xn ∈ R = K[x1, . . . , xn]
form a regular sequence.

Proof. Let I = 〈x1, . . . , xn〉. For all m ≥ 1 we have Im = Rm, while I0 = {0}.
It follows that HSR/I (t) = 1. Since (1−t)n

(1−t)n is also equal to 1, Lemma 56 implies
that x1, . . . , xn form a regular sequence.

Remark 59. The regular sequence x1, . . . , xn from Corollary 58 is the sim-
plest kind of regular sequence one can have, in the sense that the degrees
of the polynomials are minimal. To see this, let f1, . . . , fs be polynomials in
R = K[x1, . . . , xn] and suppose that one of the polynomials, say f j , has degree
≤ 0. If f j = 0, then

�

f j

�

is not a non-zero-divisor for



f1, . . . , f j−1

�

. On the
other hand, if f j = k ∈ K \ {0}, then k−1 f j = 1, so 〈 f1, . . . , fs〉 = 〈1〉 is not a
proper ideal. Therefore, if f1, . . . , fs forms a regular sequence in R, we must
have deg fi ≥ 1 for all 1≤ i ≤ s.

The following result shows that a regular sequence remains regular if we
extend its base polynomial ring by new variables y1, . . . , ym.

Lemma 60. Let K be a field and suppose that f1, . . . , fs is a regular sequence in
R = K[x1, . . . , xn]. Then f1, . . . , fs is also a regular sequence in the extended
polynomial ring S = K[x1, . . . , xn, y1, . . . , ym].
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Proof. We make two observations. First, we can interpretS asS =R[y1, . . . , ym].
Second, if 〈g1, . . . , gt〉 is an ideal in R, its generators are elements of S as
well. We can interpret the ideal in S having generators g1, . . . , gt ∈ S as
〈g1, . . . , gt〉 [y1, . . . , ym].

We want to show that for all 1 ≤ i ≤ s, [ fi] is a non-zero-divisor for the
quotient space R[y1, . . . , ym]/ 〈 f1, . . . , fi−1〉 [y1, . . . , ym]. Fix 1 ≤ i ≤ s and let
I = 〈 f1, . . . , fi−1〉 ⊆ R. By repeated application of [DF04, Chapter 9, Proposi-
tion 2], there exists a ring isomorphism

R[y1, . . . , ym]/I [y1, . . . , ym]→ (R/I) [y1, . . . , yi−1]

defined by
�∑

α cαy
α
�

7→
∑

α [cα]y
α. (The cα are polynomials in R.) Now,

suppose that [ufi] = 0 in R[y1, . . . , ym]/I [y1, . . . , ym] for some u=
∑

α cαy
α ∈

R[y1, . . . , ym]. (Again, the cα are polynomials in R.) Then
�∑

α (cα fi)yα
�

= 0
in R[y1, . . . , ym]/I [y1, . . . , ym] and by the isomorphism above, we have that
∑

α [cα fi]yα = 0. It follows that all [cα fi] are zero in R/I. But [ fi] is a non-
zero-divisor for R/I, so the [cα] are all zero in R/I. By the isomorphism,
it follows that [u] =

�∑

α cαy
α
�

= 0 in R[y1, . . . , ym]/I [y1, . . . , ym], and we
conclude that [ fi] is a non-zero-divisor for R[y1, . . . , ym]/I [y1, . . . , ym].

In this thesis, we’re mainly interested in regular sequences because we can
easily characterize their syzygies, as defined next.

Definition 61. Let K be a field and let f1, . . . , fs and u1, . . . , us be polynomials
in K[x1, . . . , xn]. We call (u1, . . . , us) a syzygy of ( f1, . . . , fs) if

∑s
k=1 uk fk = 0.

As an example, let f1 = x2, f2 = x y ∈ K[x , y]. Then y f1 − x f2 = 0, so
(y,−x) is a syzygy of ( f1, f2).

More generally, let f1, . . . , fs be arbitrary polynomials in K[x1, . . . , xn] and
let e1, . . . ,es ∈ Rs denote the standard basis vectors of Rs. (That is, ei equals
1 in its i-th component and zero elsewhere.) For all 1 ≤ i < j ≤ s we have
f j fi − fi f j = 0, which means that f jei − fie j is a syzygy of ( f1, . . . , fs). A syzygy
of this form is called a trivial syzygy.

The next lemma shows that all syzygies of a regular sequence are generated
by trivial ones.

Lemma 62. Let K be a field and let f1, . . . , fs in K[x1, . . . , xn] be a regular se-
quence. If (u1, . . . , us) is a syzygy of ( f1, . . . , fs), then there exist polynomials
vi j ∈R with 1≤ i < j ≤ s such that (u1, . . . , us) =

∑

1≤i< j≤s vi j

�

f jei − fie j

�

.

Proof. Follows from [Eis95, Corollary 17.5].

The following result is sometimes easier to work with, since it describes the
polynomials u1, . . . , us of the syzygy individually.

Corollary 63. Let K be a field and let f1, . . . , fs in K[x1, . . . , xn] be a regular
sequence. If (u1, . . . , us) is a syzygy of ( f1, . . . , fs), then there exist polynomials
wi j ∈ R with 1 ≤ i, j ≤ s such that ui =

∑s
j=1 wi j f j for all 1 ≤ i ≤ s. These

polynomials satisfy wi j = −w ji and wii = 0 for all 1≤ i, j ≤ s.
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Proof. Define

wi j =











vi j if i < j ≤ s,

0 if i = j,

−v ji if 1≤ j < i.

Considering the k-th components of both sides of the equality (u1, . . . , us) =
∑

1≤i< j≤s vi j

�

f jei − fie j

�

from Lemma 62, we find that, for all 1 ≤ k ≤ s, we
have uk =
∑

k< j≤s vk j f j −
∑

1≤i<k vik fi =
∑s

j=1 wk j f j .

2.11 Security Level

Designers of cryptographic primitives usually claim that the primitive has a se-
curity level of e.g. 128 or 256 bits against certain attacks. For the attacks
considered in this thesis, the following notion of security level suffices.

Definition 64. Suppose that an attack against a cryptographic primitive has
complexity C and success probability P. We define the security level λ, mea-
sured in bits, of the cryptographic primitive against this attack as λ= log2

�C
P

�

.

The unit of complexity depends on the context. For a hash function H (Sec-
tion 2.12), C usually denotes the number of evaluations of H. For the algebraic
attack discussed in this thesis, C will denote the number of field operations in
Fp (addition and multiplication).

Example 65. In later chapters, we estimate the complexity of an algebraic at-
tack against ATRAPOS-SPONGE to be C = 22`R field operations in Fp, where R is
the number of rounds of the ATRAPOS permutation and ` is a parameter that
depends on p. The success probability of such an attack is P = 1. Assuming that
this is the best possible attack, we say that ATRAPOS-SPONGE has a security level
of λ = log2

�

22`R

1

�

= 2`R bits (with respect to field operations in Fp) against
algebraic attacks. We will use this in Section 5.5 to derive the minimal num-
ber of rounds needed to obtain at least 128 bits of security against algebraic
attacks. ◊

2.12 Hash Functions

Recall that a hash function can be defined as a function H : F∗p→ F
`
p which takes

an input x ∈ F∗p of arbitrary length and maps it to an output H(x) of length `.
A common value for p is p = 2, in which case H operates on bits.

Three desirable security properties of a cryptographic hash function include:

1. Preimage resistance: given a random output y ∈ H
�

F∗p
�

, it should be
computationally infeasible to find an x ∈ F∗p such that H(x) = y .
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2. Second-preimage resistance: given a random x ∈ F∗p, it should be com-

putationally infeasible to find x ′ ∈ F∗p \ {x} such that H
�

x ′
�

= H(x).

3. Collision resistance: it should be computationally infeasible to find two
distinct x , x ′ ∈ F∗p with H

�

x ′
�

= H(x).

Note that the security properties are listed in increasing order of strength;
collision resistance implies second-preimage resistance, which, in turn, implies
preimage resistance (assuming that the definition of “infeasible” is kept fixed).

We can derive upper bounds for the security level of a hash function H
with respect to preimage resistance, second-preimage resistance, and collision
resistance by considering random oracles. For a random oracle, the probability
of finding a preimage x corresponding to some given y ∈ F`p after C ≤ p` queries

is P ≈ C/p`. For any 1 ≤ C ≤ p`, we find that C/P ≈ p`. Thus, λ ≈ log2 p` =
` log2 p gives an upper bound on the security level in bits of H against preimage
attacks. The same upper bound holds for second-preimage attacks.

Due to the birthday problem, the probability of finding a collision after C
queries gets close to 1 if C approaches

p

p` = p`/2. It follows that the se-
curity level in bits of H against collision attacks is bounded from above by
λ≈ log2 p`/2 = `/2 · log2 p.

For a secure hash function, the actual security level should be as close to
these derived upper bounds as possible.

Remark 66. The bounds derived here assume that the adversary uses classical
computers. In the presence of quantum computers, the security level against
preimage and second preimage attacks is bounded from above by ≈ `/2 · log2 p,
while the security level against collision attacks is bounded from above by ≈
`/3 · log2 p. See e.g. [KL20, §14.1] for a discussion.

2.13 The Sponge Construction

Extendable-output functions (XOFs) extend the notion of hash functions by al-
lowing for arbitrary length outputs. That is, a XOF is a function H : F∗p×N→ F

∗
p,

which maps pair (M ,`), consisting of a message M of arbitrary length and a re-
quested output length `, to an output of length `. The usual security notions
of preimage resistance, second-preimage resistance, and collision resistance for
hash functions carry over to XOFs. The corresponding security levels, however,
are different.

A practical method to build extendable-output functions is using the sponge
construction (Figure 2.2) [BDPV11a]. The sponge construction operates on a
state in Fb

p. The state is partitioned into a c-digit inner part and an r-digit outer
part [BDPV11a], so that r + c = b. We refer to r and c as the rate and capacity,
respectively. The state is initially zero.

1Thanks to Bart Mennink for providing the TikZ code for this figure.
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Figure 2.2: The sponge construction.1

After injectively padding and cutting the input message M into r-digit blocks,
the sponge construction proceeds in two phases. During the absorbing phase,
the first block of r-digit from the padded message is added (entrywise) to the
outer part of the state. The state is then mapped to a new state by a permu-
tation P : Fb

p → F
b
p. This process repeats until all r-digit blocks are consumed.

The squeezing phase follows the absorbing phase. During this phase, r-digit
blocks from the outer part of the state are returned by calling P as often as
required. Finally, the r-digit output blocks are combined and truncated to the
first ` digits.

As shown in [BDPV11a], sponge constructions are computationally indis-
tinguishable from random oracles, assuming generic attacks. We call an attack
generic if only exploits general properties of sponge constructions, but not of
the specific permutation used within the sponge construction. In this setting,
the sponge construction, where the output is truncated to ` digits, has a classical
security level of ≈ min (c/2, n) · log2 p bits against (second) preimage attacks
and a classical security level of ≈ min (c/2, n/2) · log2 p bits against collision
attacks.

Of course, practical implementations of sponge constructions are trivially
distinguishable from random oracles, since the permutation P used in the sponge
construction has a compact description (which we assume is known publically).

However, the mere fact that the permutation P has a trivial distinguisher,
due to its compact description, provides no practical benefits in an attack. In
[BDPV11a], examples of structural (non-trivial) distinguishers for P are listed,
whose existence may be of practical use in attacks. Well-known structural dis-
tinguishers are differential and linear cryptanalysis. In this thesis, however,
we will be interested in a structural distinguisher called the constrained-input
constrained-output (CICO) problem. This is not a single problem, but rather a
family of problems.

Definition 67 (CICO problem). Let P : Fb
p → F

b
p be a permutation. Every CICO

problem has the following form: given a set of possible inputs, X ⊆ Fb
p, and a
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set of possible outputs, Y ⊆ Fb
p, find a pair (x , y) ∈ X ×Y such that y = P(x).

The general notion of the CICO problem subsumes the specific notions of
preimage resistance, second-preimage resistance, collision resistance, etc. For
example, consider the preimage resistance property which states that, given
a random output y , it should be computationally infeasible to find an input
x that maps to y . For an r-bit input and an r-bit output, this corresponds
to the following CICO problem (where we ignore padding for the sake of the
argument): given X = Fb

p and Y = {y}, find a pair (x , y) ∈ X × Y with y =
P(x). Note that we can account for padding by constricting X .

We leave it as an exercise to the reader to formulate other security properties
in terms of CICO problems.
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Chapter 3

ATRAPOS-SPONGE

In this section, we define ATRAPOS-SPONGE, the ATRAPOS permutations, and the
CICO problem for ATRAPOS that we will analyze in this thesis.

3.1 Specification

ATRAPOS-SPONGE is an extendable-output function (XOF) based on the sponge
construction [DMMØ25]. It is designed to be an efficient alternative for SHA3
in KYBER and DILITHIUM on platforms where hardware acceleration for multi-
plication in Fp is available, where either p = 3329 (for KYBER) or p = 8380417
(for DILITHIUM). ATRAPOS, the permutation used in ATRAPOS-SPONGE, operates
on states of digits in Fp. The states are represented by two-dimensional arrays
consisting of 3 rows and ` columns:

a=





a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
a0,0 a1,0 · · · a`−1,0



 ,

where ax ,y ∈ Fp for all 0 ≤ x ≤ ` − 1 and 0 ≤ y ≤ 2. Equivalently, states
can be interpreted as one-dimensional vectors in F3`

p . Given a one-dimensional

representation a= (a0, . . . , a3`−1) ∈ F3`
p , its two-dimensional representation can

be computed by converting the one-dimensional index i to the two-dimensional
index (i mod `, i mod 3). Since the ATRAPOS permutations are defined using
two-dimensional representations, we will represent states in F3`

p by their two-
dimensional representation from now on.

The ATRAPOS-SPONGE specification is still in development and a number of
parameters have not been fixed yet. For example, the current ATRAPOS-SPONGE

specification allows either the bottom row (the ax ,0) or the bottom two rows
(the ax ,0 and ax ,1) to be used for the outer part in the sponge construction. In
this thesis, we will confine to the case where only the bottom row is used for
the outer part, since it greatly simplifies the analysis. In this case, the rate and
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capacity of ATRAPOS-SPONGE are r = ` and c = 2`, respectively. The specifica-
tion prescribes ` = 17 for KYBER and ` = 7 for DILITHIUM in order to achieve
128 bits (with respect to evaluations of the ATRAPOS permutation) of generic
collision resistance in the presence of adversaries having access to a quantum
computer.

3.1.1 The ATRAPOS Permutations

ATRAPOS is a family of permutations. Every ATRAPOS permutation is a com-
position of R round functions. The j-th round function is itself a composition
γ ◦ ι j ◦ ρ ◦ θ , where γ, ι j ,ρ,θ : F3`

p → F
3`
p are the following (polynomial) per-

mutations:

θ : ax ,y ← ax ,y + ax+1,y+1 + ax+4,y+4 + ax+5,y+5 ∀x , y

ρ : ax ,y ← ax+ry ,y ∀x , y

ι j : a0,0← a0,0 + c j

γ: ax ,0← ax ,0 + ax ,1ax ,2 ∀x

Note that x ranges over {0, . . . ,`− 1} and y ranges over {0,1, 2}. (The x-
components of indices above are implicitly taken modulo ` and the y-components
are implicitly taken modulo 3.) Here, c j ∈ Fp is a round-dependent constant.
The current ATRAPOS specification has not fixed the c j yet, but our analysis of
ATRAPOS will be independent of their specific values.

The 0 < ry < ` are row-dependent column shifts. The shift r0 is set to 0.
Specific values for r1 and r2 have not yet been chosen, but it has been deter-
mined that they have to satisfy r2 = r1 + 1 or r2 = r1 + 4. These choices of
r1 and r2 ensure that the ideal degree related to ATRAPOS are maximal, as we
will see in Chapter 4. Again, the specific values of r1 and r2 do not change our
analysis.

We define ATRAPOS [1] = γ ◦ ι1 ◦ρ ◦ θ to be the first round of the ATRAPOS

permutation. Generally, having defined ATRAPOS [1], . . . , ATRAPOS [R− 1] we
define ATRAPOS [R] = γ ◦ ιR ◦ρ ◦ θ ◦ATRAPOS [R− 1] to be the first R rounds of
ATRAPOS.

Remark 68. The ATRAPOS-SPONGE specification only allows `= 17 (for KYBER)
and `= 7 (for DILITHIUM). However, the ATRAPOS permutations defined in this
section are permutations for all odd `≥ 3. We will therefore analyze ATRAPOS-
SPONGE for arbitrary odd `≥ 3.

3.2 CICO problem

As discussed in Section 2.13, permutations used in sponge constructions need to
be secure with respect to structural distinguishers. In this section, we motivate
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and define a CICO problem for ATRAPOS by studying a preimage attack. For
simplicity, we only consider a target digest consisting of a single r-digit block.

Consider ATRAPOS-SPONGE with an output length of r digits, as depicted in
Figure 3.1. Let M ′ = pad (M) denote the padded version of M . We can write
this as the concatenation M ′ = M1 ‖M2 ‖ · · · ‖Mn, where M1, . . . , Mn are r-digit
blocks. We study the following problem.

Definition 69 (Relaxed preimage attack). Given an r-digit target digest h, find
r-digit blocks M1, . . . , Mn such that the padded message M ′ = M1 ‖M2 ‖ · · · ‖Mn
results in the (truncated) digest h.
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Figure 3.1: The sponge construction for ATRAPOS, where the output consists of
a single r-digit block.

Note that the adversary may assume that M ′ is already a padded message,
i.e. there exists some message M such that M ′ = pad (M). This is to the advan-
tage of the adversary, since M ′ may not actually be in the image of the padding
function. By showing that the relaxed preimage attack is computationally infea-
sible, we therefore also show that the regular preimage attack, where we need
to find a message M before the padding step, is computationally infeasible.

To formalize this, let M ′ = M1‖M2‖· · ·‖Mn be any padded message. Let a de-
note the state just before the last call to ATRAPOS [R] in Figure 3.1 (after the en-
trywise addition of Mn to the outer part of the state) and let a′ = ATRAPOS [R](a)
denote the state after the last call to ATRAPOS [R]. We suggestively write

a=





a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
x1 x2 · · · x`





and

a′ =





a′0,2 a′1,2 · · · a′
`−1,2

a′0,1 a′1,1 · · · a′
`−1,1

y1 y2 · · · y`



 ,
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to indicate that an adversary can easily set the bottom row of a as desired, and
to indicate that the bottom row of a′ corresponds to the output digest h.

Solving the relaxed preimage attack now corresponds to finding a1,a2,x ∈
F`p such that the state a = (a1,a2,x)T is mapped to the state a′ =

�

a′1,a′2,y
�T

,

where a′1,a′2,y ∈ F`p and y is the target digest. This motivates the following
CICO problem.

Definition 70 (CICO problem for ATRAPOS-SPONGE). Given a1,a2,y ∈ F`p, find

x ∈ F`p such that there exist a′1,a′2 ∈ F
`
p with

ATRAPOS [R](a2,a1,x) =
�

a′2,a′1,y
�

.

Note that in this CICO problem, a1 and a2 are fixed. We will see that the
CICO problem in Definition 70 is computationally infeasible (for R sufficiently
large) for all choices of a1 and a2. Consequently, the relaxed preimage attack
in Definition 69 is also computationally infeasible (for R sufficiently large).

3.2.1 Polynomial Modeling

In the CICO problem in Definition 70, a1,a2 ∈ F`p are fixed, while x ∈ F`p is a
variable. Thus, we may consider x1, . . . , x` to be variables in a polynomial ring
R= Fp[x1, . . . , x`]. We can then take ax ,1 and ax ,2 to be constants in this ring.
From this point of view, ATRAPOS is a mapping




a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
x1 x2 · · · x`



 7→





a′0,2 a′1,2 · · · a′
`−1,2

a′0,1 a′1,1 · · · a′
`−1,1

g1 g2 · · · g`



 .

Since the round function of ATRAPOS is a composition of polynomials, ATRAPOS

itself is a polynomial mapping. Therefore, gi , a′x ,1, and a′x ,2 are polynomials in
R. The CICO problem in Definition 70 is equivalent to finding a solution for
the polynomial system

g1(x1, . . . , x`) = y1

g2(x1, . . . , x`) = y2

...

g`(x1, . . . , x`) = y`

(3.1)

Recall from Section 2.8 that state-of-the-art algorithms for solving poly-
nomial systems consist of three steps (DRL Gröbner basis computation using
F4/F5, lexicographic Gröbner basis computation using FGLM, univariate poly-
nomial solving), where the running time is dominated by the first two steps
(Remark 47). The experimental results in Chapter 6 show that, for small sys-
tems, the first step (DRL Gröbner basis computation) is negligible compared to
the second step (lexicographic Gröbner basis computation using FGLM). In this
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thesis, we will formally show that the second step (lexicographic Gröbner basis
computation using FGLM) is computationally infeasible. Thus, even if an ad-
versary is able to perform the other two steps efficiently, the overall three-step
algorithm is still infeasible due to the second step.

In line with the discussion in Section 2.8, we estimate the complexity of
the FGLM step by CFGLM = dωI , where we conservatively set ω = 2 to account
for attacks that exploit sparsity of the polynomial system in Equation (3.1). In
Chapter 4 and Chapter 5 we will show that, for all odd ` > 3 and for all R≥ 1,
the ideal corresponding to Equation (3.1) has ideal degree 2`R. It then follows
that the complexity of the FGLM step for an R-round ATRAPOS permutation is
given by CFGLM = 22`R.
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Chapter 4

Single-Round Analysis

In this chapter, we determine the complexity of solving the CICO problem in
Definition 70 for a single round of ATRAPOS. For simplicity, we restrict to the
case where ` > 3 is an odd number not divisible by 3, which is the relevant case
for KYBER (`= 17) and DILITHIUM (`= 7).

In Section 4.1, we will work out a polynomial system Finh, which corre-
sponds to a single round of ATRAPOS whenever ` > 3 is not divisible by 3. From
Finh we obtain a system Fhom consisting of homogeneous polynomials, whose
ideal Ihom = 〈Fhom〉 has the same ideal degree as Iinh = 〈Finh〉, but is easier to
work with. In Section 4.2, we consider the Hilbert series of Fp[x1, . . . , x`]/Ihom
and make a claim (the “Direct Sum Claim”), which is equivalent to this Hilbert
series being equal to

∑`
m=0

�

`
m

�

· tm. In Section 4.3 and Section 4.4 we give a
proof sketch and a formal proof, respectively, for this claim. As a by-product,
we learn that Ihom is generated by a regular sequence of polynomials.

Throughout this chapter, p ≥ 3 will denote a prime, ` ≥ 3 an odd number
denoting the width of the two-dimensional ATRAPOS state, and R will denote
the polynomial ring Fp[x1, . . . , x`].

4.1 Polynomial System

Let

a=





a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
a0,0 a1,0 · · · a`−1,0



=





a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
x1 x2 · · · x`





be the input state and let

a′ =





a′0,2 a′1,2 · · · a′
`−1,2

a′0,1 a′1,1 · · · a′
`−1,1

a′0,0 a′1,0 · · · a′
`−1,0



=





a′0,2 a′1,2 · · · a′
`−1,2

a′0,1 a′1,1 · · · a′
`−1,1

g1 g2 · · · g`





be the output state after a single round of ATRAPOS, say the j-th round. As
noted in Section 3.2, every element of a′ can be viewed as a polynomial in
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the polynomial ring R = Fp[x1, . . . , x`]. The complexity of solving the CICO
problem in Definition 70 is given by dimF (R/I), where I is the ideal generated
by g1, . . . , g`. We explicitly compute expressions for g1, . . . , g` and use these to
determine dimF (R/I).

We introduce the variables a1 = θ (a), a2 = ρ(a1), a3 = ι(a2) for the in-
termediate states. (Hence, a′ = γ(a3).) After applying θ to a, the value of the
state at (x , y) is given by

(a1)x ,y = ax ,y + ax+1,y+1 + ax+4,y+4 + ax+5,y+5

for all 0≤ x ≤ `−1 and 0≤ y ≤ 2. (Recall that the x-components of the indices
are taken modulo `, while the y-components are taken modulo 3.) Applying ρ
to a1, we have

(a2)x ,y = (ρ(a1))x+ry ,y

= ax+ry ,y + ax+1+ry ,y+1 + ax+4+ry ,y+4 + ax+5+ry ,y+5

for all 0≤ x ≤ `− 1 and 0≤ y ≤ 2. After the ι step, we have




(a3)x ,2
(a3)x ,1
(a3)x ,0



=





(ι(a2))x ,2
(ι(a2))x ,1
(ι(a2))x ,0



=





ax+r2,2 + ax+1+r2,0 + ax+4+r2,0 + ax+5+r2,1
ax+r1,1 + ax+1+r1,2 + ax+4+r1,2 + ax+5+r1,0

ax+r0,0 + ax+1+r0,1 + ax+4+r0,1 + ax+5+r0,2 + c j





for all 0≤ x ≤ `−1. Finally, after applying γ to a3, we find that for all 0≤ x ≤
`− 1,

a′x ,0 = (a3)x ,0 + (a3)x ,1 (a3)x ,2

= ax+5+r1,0

�

ax+1+r2,0 + ax+4+r2,0

�

+ εx+1(x),

where ε1(x), . . . ,ε`(x) are polynomials in R of degree < 2.
Write n for the unique integer m ∈ {1, . . . ,`} such that n−m ∈ `Z. Then,

for all i ∈ Z we have ai−1,0 = x i . It follows that

gi = a′i−1,0 = x i+5+r1

�

x i+1+r2
+ x i+4+r2

�

+ εi(x)

for all 1≤ i ≤ `.
In the ATRAPOS specification (Section 3.1), we saw that either r2 = r1 + 1

or r2 = r1 + 4. If r2 = r1 + 1, then

gi = x2
i+5+r1

+ x i+5+r1
· x i+2+r1

+ εi(x)

and if r2 = r1 + 4, we have

gi = x2
i+5+r1

+ x i+5+r1
· x i+8+r1

+ εi(x).

Without loss of generality, we can relabel the x i using i 7→ i − 5 to obtain equa-
tions of the form

gi = x2
i+r1
+ x i+r1

· x i−3+r1
+ εi(x)
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and
gi = x2

i+r1
+ x i+r1

· x i+3+r1
+ εi(x),

respectively.
As long as gcd (`, 3) = 1, we can relabel x1, . . . , x` and g1, . . . , g` in such a

way that
g1 = x2

1 + x1 x2 + ε1

g2 = x2
2 + x2 x3 + ε2

...

g` = x2
` + x1 x` + ε`

Since 3 is prime, the condition gcd (`, 3) = 1 is equivalent to ` not being divisible
by 3. This condition is certainly satisfied when `= 17 (for KYBER) or `= 7 (for
DILITHIUM).

Remark 71. To delimit the scope of this thesis, we will not analyze the ideals
corresponding to the ATRAPOS permutations when ` is divisible by 3.

If ` > 3 is odd and not divisible by 3, solving the CICO problem in Def-
inition 70 for a single round of ATRAPOS amounts to solving the polynomial
system

g1 = y1

g2 = y2

...

g` = y`

Since y1, . . . , y` are constants in F[x1, . . . , xn], we may absorb them in the εi .
Thus, without loss of generality, solving the CICO problem for a single round of
ATRAPOS (where, again, ` > 3 is not divisible by 3) is equivalent to solving the
polynomial system

g1 = f1 + ε1 = 0

g2 = f2 + ε2 = 0
...

g` = f` + ε` = 0

(4.1)

where
fi := x2

i + x i x i+1 ∈ F[x1, . . . , xn]

contains the terms of gi of degree 2 and εi ∈ F[x1, . . . , xn] contains the lower
degree terms.

We call Finh = (g1, . . . , g`) ∈ R` the inhomogeneous system and refer to
Iinh = 〈Finh〉 ⊆R as the ideal corresponding to the inhomogeneous system.

The notation εi for the lower degree terms in Equation (4.1) is suggestive:
as we will see in Chapter 5, these terms do not contribute to the ideal degree.
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It therefore makes sense to study a simplified version of the system in Equa-
tion (4.1) where the εi are removed:

f1 = x2
1 + x1 x2 = 0

f2 = x2
2 + x2 x3 = 0

...

f` = x2
` + x`x1 = 0

We will refer to Fhom = ( f1, . . . , f`) ∈ R` as the homogeneous system corre-
sponding to Finh. The ideal Ihom = 〈Fhom〉 ⊆ R is the ideal corresponding the
homogeneous system. For the sake of brevity, in this section we will often drop
the subscript and write I instead of Ihom.

The Bézout bound shows that the ideal degree dI = dimF (R/I) is at most
∏`

k=1 deg fi = 2`. Since the hardness of the CICO problem relies on the ideal
degree being large, the optimal case is when dIinh

= 2`. In the remainder of this
chapter, we will see that dI is indeed equal to 2`.

Remark 72. The ideal I = 〈Fhom〉 is well-defined even if ` is divisible by 3.
Although in these cases, I does not correspond to an ideal induced by ATRAPOS,
it is still useful to study them. For example, the Hilbert series of R/I for ` = 3
and `= 9 (see Table 4.1 in the next section), will help us understand the Hilbert
series for arbitrary `.

We will therefore study I for all odd `≥ 3. At the end of Chapter 5, we will
again restrict to the cases where ` is not a multiple of 3.

For even `, the ideal I does not have ideal degree 2` anymore. We will not
discuss this case, since ATRAPOS is not a permutation for even `.

4.2 Direct Sum Claim

For small odd `, the ideal degree dI can be computed directly by evaluating the
Hilbert series HSR/I (t) at t = 1 (see Section 2.9). Table 4.1 illustrates this for
small odd values of `≥ 3. The code can be found in Section A.1.

` Hilbert series HSR/I (t) dI
3 t3 + 3t2 + 3t + 1 23

5 t5 + 5t4 + 10t3 + 10t2 + 5t + 1 25

7 t7 + 7t6 + 21t5 + 35t4 + 35t3 + 21t2 + 7t + 1 27

9 t9 + 9t8 + 36t7 + 84t6 + 126t5 + 126t4 + 84t3 + 36t2 + 9t + 1 29

Table 4.1: Hilbert series of R/I and ideal degree dI for small values of `.

It may not be immediately obvious, but the coefficients of the Hilbert se-
ries listed in Table 4.1 are binomial coefficients. More precisely, it seems that
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dimF (Rm/Im) =
�

`
m

�

, where Rm and Im denote the m-th degree homogeneous
subspaces of R and I, respectively, defined in Definition 50. If this holds in
general, then indeed

dI = HSR/I (1) =
∞
∑

m=0

dimF (Rm/Im) =
∑̀

m=0

�

`

m

�

= 2`.

(The equality
∑`

m=0

�

`
m

�

= 2` is a well-known equality and can be proven using
induction or using a combinatorial argument: both sides of the equation count
the number of subsets of {1,2, . . . ,`}.) Thus, it suffices to show the equality

dimF (Rm/Im) =
�

`

m

�

(4.2)

for all m ∈ Z≥0.
For all m ∈ Z≥0, the vector spaces Rm and Im are finite-dimensional, so we

may use Definition 2 to see that dimF (Rm/Im) = dimFRm − dimF Im. Equa-
tion (4.2) is therefore equivalent to dimF Im +

�

`
m

�

= dimFRm. In other words,
we want to show that every Rm can be written as the direct sum Rm = Im⊕Vm
for some
�

`
m

�

-dimensional linear subspace Vm ⊆Rm.
The next example verifies Equation (4.2) for ` = 3 and 0 ≤ m ≤ 3 by

exhibiting linear subspaces Vm ⊆Rm with the stated property.

Example 73. Let `= 3 and R= Fp[x , y, z]. Then Fhom = ( f1, f2, f3), where

f1 = x2 + x y

f2 = y2 + yz

f3 = z2 + zx

Recall from Lemma 53 that Im can be written as

Im = spanF {x
α fi | 1≤ i ≤ n and degα= m− 2}

for all m ∈ Z≥0. For 0≤ m≤ 3 we find the following:

I0 = spanF {0}
I1 = spanF {0}
I2 = spanF { f1, f2, f3}
I3 = spanF {x f1, y f1, z f1, x f2, y f2, z f2, x f3, y f3, z f3}

We verify that Equation (4.2) holds for each of these homogeneous sub-
spaces by explicitly computing an

�

`
m

�

-dimensional linear subspace Vm ⊆ Rm
such that Rm = Im ⊕ Vm.

• For m = 0 we have I0 = {0} and R0 = Fp, since the 0-degree polyno-
mials in R are exactly the constant polynomials. The space V0 = Fp =
spanF {1} ⊆ R0 is a linear space of dimension

�3
0

�

= 1 such that R0 =
I0 ⊕ V0.
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• For m = 1, I1 is again the zero space and R1 = spanF {x , y, z}. Thus,
V1 = spanF {x , y, z} satisfies Rm = Im ⊕ Vm and dimF V1 = 3=

�3
1

�

.

• For m = 2, let V2 = spanF {x y, xz, yz}. It is clear that I2 ∩ V2 = {0} and
dimF V2 = 3=
�3

2

�

. Moreover, every non-zero monomial in f ∈R is either
of the form f = x2

i or f = x i x j , where x i , x j ∈ {x , y, z}. If f = x i x j , then
it is clear that f ∈ V2. If f = x2

i , then f = fi − x i x i+1. In both cases,
f ∈ I2⊕ V2 and it follows that Rm ⊆ I2⊕ V2. The reverse inclusion holds
trivially, so Rm = I2 ⊕ V2.

• For m= 3, R3 = spanF
�

x3, x2 y, x2z, x y2, . . . , z3
	

. It can be verified that
every monomial f ∈R can be written as f = g + h, where g ∈ I3 and h
is either 0 or ±x yz. For example, x2 y = g+h, where g = y f1− x f2 ∈ I3
and h = x yz. We leave it as an exercise to the reader to verify that this
property holds for the other monomials as well. (In the next sections, we
discuss a structural method to find such “decompositions”.) The element
x yz is not in I3, so for V3 = spanF {x yz} we have dimF V3 = 1 =

�3
3

�

and
Rm = Im ⊕ Vm.

In all cases above, Vm = SFm, the linear F-span of all m-th degree square-
free monomials, satisfies Rm = Im ⊕ Vm. ◊

Remark 74. The relation Rm = Im ⊕ Vm does not uniquely define Vm (when
m≥ 2). For example, both V2 = spanF {x y, xz, yz} and W2 = spanF

�

x2, y2, z2
	

satisfy I2 ⊕ V2 = R2 = I2 ⊕W2, but V2 6= W2. Of course, both V2 and W2 have
vector space dimension dimFR2 − dimF I2 = 3.

The following claim generalizes the result we found in Example 73.

Claim 75 (Direct Sum Claim). Let p ≥ 3 be prime, let ` ≥ 3 be odd, and let
I = 〈Fhom〉 be the ideal defined in Section 4.1. For all m ∈ Z≥0, Rm is the direct
sum of Im and SFm.

Note that SFm is an
�

`
m

�

-dimensional subspace of Rm. By our discussion
above, Claim 75 is equivalent to Equation (4.2).

The next sections are dedicated to proving the claim.

4.3 Proof Sketch for the Direct Sum Claim

Let p,`, m be as in Claim 75. By the definition of direct sums (Definition 1),
the Direct Sum Claim (Claim 75) is equivalent to Im ∩ SFm = {0} and Rm =
Im + SFm. Most of the difficulty of showing the claim comes from the latter
statement. In this subsection, we discuss a systematic method to decompose a
monomial f in Rm as f = g + h, where g and h are polynomials in Im and
SFm, respectively. They key insight here is that decompositions in Rm can be
used to find decompositions in Rm+1. This will allow us to prove the equality
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Rm = Im + SFm using induction on m ≥ 0. We will see that it is not immedi-
ately obvious that the decomposition method presented in this section always
produces a decomposition, and we postpone the proof of this to Section 4.4.

Since polynomials in Rm are Fp-linear combinations of monomials in Rm, a
decomposition of an arbitrary polynomial f ∈Rm can be found by decomposing
its terms. We therefore focus on decomposing terms in Rm.

The following example shows the decompositions of all quadratic monomi-
als in R= Fp[x , y, z].

Example 76. Let `= 3 and R= Fp[x , y, z]. Then Fhom = ( f1, f2, f3), where

f1 = x2 + x y

f2 = y2 + yz

f3 = z2 + xz

The second-degree monomials in R are
�

x2, y2, z2, x y, yz, xz
	

. For every
f ∈ {x y, yz, xz}, we have the trivial decomposition f = g+h, where g = 0 ∈ I2
and h= f ∈ SF2, since these monomials are already square-free.

The monomial f = x2 ∈R2 can be written as

f =
�

x2 + x y
�

− x y = g + h, (4.3)

where g = x2 + x y ∈ I2 and h= −x y ∈ SF2. Similarly, we have

y2 =
�

y2 + yz
�

− yz ∈ I2 +SF2 (4.4)

and
z2 =
�

z2 + xz
�

− xz ∈ I2 +SF2,

since y2 + yz and z2 + xz are elements of I2 and yz, xz ∈ SF2. ◊

The next example shows how a decomposition in R2 from Example 76 can
be used to decompose a monomial in R3.

Example 77. As in Example 76, let ` = 3 and R = Fp[x , y, z]. We want to
decompose f = x2z ∈R3.

Multiplying both sides of Equation (4.3) by z yields

x2z =
�

x2 + x y
�

z − x yz. (4.5)

We already know that x2 + x y ∈ I2, so Lemma 53 implies
�

x2 + x y
�

z ∈ I3.
Moreover, x yz is square-free. It follows that the sum in Equation (4.5) is a
decomposition of x2z ∈R3 into its I3 and SF3 components. ◊

In this example we saw that multiplying the decomposition of x2 ∈R2 by z
yields a decomposition of x2z. This is possible, because the square-free part h
of the decomposition of x2 is not divisible by z. In general, the decomposition
of a monomial f /xk may have a square-free part which is divisible by xk. In
this case, we have to take some extra steps to find a decomposition of f , as
illustrated by the following example.
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Example 78. Again, let ` = 3 and R = Fp[x , y, z]. We want to decompose
f = x3 ∈R3.

Similarly to Example 77, we start by multiplying both sides of Equation (4.3)
by x:

x3 =
�

x2 + x y
�

x − x2 y. (4.6)

Lemma 53 implies that
�

x2 + x y
�

x ∈ I3, but the term x2 y is certainly not
square-free. This does not mean all hope is lost; if −x2 y can be decomposed as
−x2 y = g ′+h′, then we obtain a decomposition x3 = g +h ∈ I3+SF3, where
g =
�

x2 + x y
�

x + g ′ ∈ I3 and h= h′ ∈ SF3.
We multiply both sides of Equation (4.3) by −y to obtain

−x2 y = −
�

x2 + x y
�

y + x y2. (4.7)

The term x y2 is still not square-free, so we try to decompose x y2. Multiplying
both sides of Equation (4.4) by −x yields

x y2 =
�

y2 + yz
�

x − x yz. (4.8)

The term x yz is square-free. Combining equations (4.6) to (4.8), we obtain

x3 =
�

x2 + x y
�

x − x2 y

=
�

x2 + x y
�

x −
�

x2 + x y
�

y + x y2

=
�

x2 + x y
�

x −
�

x2 + x y
�

y +
�

y2 + yz
�

x
︸ ︷︷ ︸

:=g

+(−x yz)
︸ ︷︷ ︸

:=h

Note that g is a sum of polynomials in I3 and is therefore itself a polynomial in
I3. We also see that h ∈ SF3, so f = g + h is a decomposition of f into its I3
and SF3 components. ◊

Assume, for a moment, that we know how to decompose non-zero terms
in Rm for some integer m ≥ 2. (The cases m = 0 and m = 1 are trivial.)
We now discuss a method to find decompositions of non-zero terms in Rm+1
as well. To this end, let f(1) = cxα be a non-zero term in Rm+1 that is not
already square-free. Then there exists at least one variable xk dividing f(1) such
that f̃(1) := f(1)/xk ∈ Rm is still not square-free. By assumption, there exist
g̃(1) ∈ Im and h̃(1) ∈ SFm such that f̃ = g̃(1) + h̃(1). Define g(1) = xk g̃(1) and
h(1) = xkh̃(1), so that f(1) = g(1) + h(1). (If we allowed xk such that f(1)/xk is
square-free, we would have g(1) = 0 and h(1), which does not help us.)

As in the examples, it follows from Lemma 53 that g(1) is in Im+1. If h̃(1) is
not divisible by xk, then h(1) is square-free and we have found the desired de-
composition. If h(1) = h̃(1) = 0, we have a decomposition as well. Otherwise, if
h̃(1) is a non-zero term divisible by xk, we set f(2) = h(1) and repeat. Continuing,
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we obtain the following system:

f(1) = g(1) + h(1)
f(2) = g(2) + h(2)

...

f( j) = g( j) + h( j)
...

(4.9)

In Section 4.4, we will see that every h(i) is again a term.
The system above is finite if and only if some h( j) is square-free or zero. In

this case, it follows from Equation (4.9) that f(1) =
∑ j

k=1 g(k) + h( j). By con-

struction, we have
∑ j

k=1 g(k) ∈ Im+1 and h( j) ∈ SFm+1, from which it follows
that f(1) ∈ Im+1 +SFm+1.

Now consider the case where the system is infinite, i.e. none of the h(k) are
square-free. Observe that every f(k) is a term: f(1) is a term and, by construction,
f(i) = h(i−1) is a term for all i > 1. There are only finitely many monomials, so
there must be 1 ≤ i < j such that f(i) = d f( j) for some d ∈ Fp \ {0}. It can be
shown that d ∈ {−1,1}, but we will not prove this fact until the formal proof in
Section 4.4. Suppose first that 1≤ i < j are such that f(i) = − f( j). Then,

f(i) =
j−1
∑

k=i

g(k) + h( j−1) =
j−1
∑

k=i

g(k) + f( j) =
j−1
∑

k=i

g(k) − f(i).

Adding f(i) to both sides gives 2 f(i) =
∑ j−1

k=i g(k) ∈ Im+1. Since p > 2, 2 is

invertible in Fp and we see that f(i) ∈ Im+1. We conclude that f(1) =
∑i−1

k=1 g(k)+
f(i) ∈ Im+1 ⊆ Im+1 +SFm+1.

If there exist no 1 ≤ i < j such that f(i) = − f( j), then at least there exist
1≤ i < j with f(i) = f( j). This yields the equation

f(i) =
j−1
∑

k=i

g(k) + h( j−1) =
j−1
∑

k=i

g(k) + f( j) =
j−1
∑

k=i

g(k) + f(i).

From this equation it follows that
∑ j−1

k=i g(k) = 0, but we don’t learn anything
new about f(i).

In the following example, the system in Equation (4.9) is infinite.

Example 79. Let ` = 3 and R = Fp[x , y, z]. We want to decompose f(1) =
x2 yz ∈ R4. Since there exist no square-free monomials of degree 4 in R, a
decomposition exists if and only if f(1) ∈ I4. Necessarily, the system in Equa-
tion (4.9) is infinite.

In the first step we divide f(1) by one of its divisors xk such that f̃(1) = f(1)/xk
is still not square-free. In previous examples, there was only one possibility for
xk, but in this example there are multiple possibilities.
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We first consider the system obtained by choosing xk such that k is minimal:

x2 yz = y ·
�

g̃(1) − x yz
�

= g(1) − x y2z

−x y2z = x ·
�

g̃(2) − x yz
�

= g(2) − x2 yz
...

It follows that 2x2 yz = g(1) + g(2) ∈ I, so f = x2 yz ∈ I, as predicted.
Next, we choose the xk such that k is maximal:

x2 yz = z ·
�

g̃(1) + x yz
�

= g(1) + x yz2

x yz2 = y ·
�

g̃(2) + x yz
�

= g(2) + x y2z
...

This system does not yield a decomposition for f . ◊

For every term f ∈Rm+1, we may determine a system as in Equation (4.9),
given that we know how to decompose monomials f̃ ∈ Rm. The last example
shows that, depending on how we choose the xk, we may or may not derive a
decomposition from this system. In the example, the strategy of choosing xk
such that k is minimal yielded a decomposition of f . In the next section, we
will see that this strategy always produces decompositions. Some additional
information on the structure of decompositions is needed to prove this.

4.4 Proving the Direct Sum Claim

In the decomposition system in Equation (4.9), every non-zero h(i) is obtained
by multiplying the square-free term h̃(i) by some variable xk. If xk does not di-
vide h̃(i), then h(i) is square-free. Otherwise, h(i) is “almost” square-free, except
for x2

k . This motivates the following definition.

Definition 80. Let f be a monomial in Rm. We say that f is almost square-
free if there exist m−1 indices 1≤ i1 < . . .< im−1 ≤ ` and some 1≤ r ≤ m−1
such that f = x ir · x i1 x i2 · · · x im−1

. We call ir and x ir the repeated index and
repeated factor of f , respectively.

We define ASF to be the Fp-vector space spanned by the almost square-free
monomials of R.

We extend the notion of almost square-free monomials to terms cxα ∈ R
(where c 6= 0) by calling cxα almost square-free if xα is.

By induction on m ≥ 0, we will prove that Rm = Im + SFm using the de-
composition method presented in the previous section. As indicated in the proof
sketch, the induction hypothesis does not only need to include the statement
Rm = Im + SFm, but also needs to include some information on the structure
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of decompositions f = g + h ∈ Im + SFm to show that we can always find a
system as in Equation (4.9) from which a decomposition of f can be derived.
(That is, we do not end up with equations of the form f(i) =

∑ j−1
k=i g(k) + f(i).)

The following theorem captures these requirements. Recall from Section 4.1
that n denotes the unique integer m ∈ {1, . . . ,`} such that n−m ∈ `Z.

Theorem 81. Let p ≥ 3 be prime, let ` ≥ 3 be odd, and let I = 〈Fhom〉 be the
ideal defined in Section 4.1. For all m ∈ Z≥0, the following properties hold:

1. Rm = Im +SFm.

2. Suppose that 2 ≤ m ≤ ` and that f = cxα is an almost square-free term in
ASFm with repeated factor x ir . Then there exists a decomposition f = g+h,
with g ∈ Im and h = (−1)k · x ir+k · sqfree ( f ) ∈ SFm, where k ≥ 1 is the
minimal positive integer such that x ir+k does not divide f .

Before proceeding with the proof of Theorem 81, we prove a number of
lemmas for special cases. These lemmas are of great importance for the final
proof, since they describe the structure of h for certain decompositions f =
g + h ∈ Im +SFm.

Lemma 82. Suppose that Theorem 81 holds for a fixed 2 ≤ m < `. Let f =
c · x2

i1
x i2 · · · x im be an almost square-free term in ASFm+1. Then there exists a

decomposition f = g + h, where g ∈ Im+1 and h ∈ SFm+1 are as described in
property 2 of Theorem 81.

Proof. Let f(1) = f . Then f̃(1) = f(1)/x i2 = c · x2
i1

x i3 · · · x im ∈ ASFm. By as-

sumption, Theorem 81 holds for m, so we can write f̃(1) = g̃(1) + h̃(1) such that
g̃(1) ∈ Im and

h̃(1) = (−1)k1 c · x i1+k1
· x i1 x i3 · · · x im ∈ SFm,

where k1 ≥ 1 is the minimal positive integer such that x i1+k1
does not divide

f̃(1). Thus, i1 + k1 is not equal to any of i1, i3, . . . , im.
If, in addition, it holds that i1 + k1 6= i2, then

h(1) = x i2 h̃(1) = (−1)k1 c · x i1+k1
· x i1 x i2 x i3 · · · x im

is a square-free term of degree m+ 1. Moreover, g(1) = x i2 g̃(1) is an element of
Im+1 by Lemma 53. We can therefore write f(1) = g(1) + h(1) ∈ Im+1 + SFm+1.
To show minimality of k1, suppose that there exists some 1 ≤ k < k1 such that
x i1+k does not divide f . Then x i1+k does not divide f̃(1) either, contradicting the
fact that k1 is minimal among the positive integers k such that x i1+k does not

divide f̃(1). We conclude that f = g(1) + h(1) is a decomposition in the form of
property 2 of Theorem 81.
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Now, suppose that i1 + k1 = i2. Then

h(1) = (−1)k1 c · x i1 x2
i2

x i3 · · · x im ∈ASFm+1.

Let f(2) = h(1) and write

f̃(2) = f(2)/x i1 = (−1)k1 c · x2
i2

x i3 · · · x im ∈ASFm.

By assumption, there exists a decomposition f̃(2) = g̃(2) + h̃(2), where g̃(2) ∈ Im
and

h̃(2) = (−1)k1+k2 c · x i2+k2
· x i2 x i3 · · · x im ∈ SFm,

where k2 ≥ 1 is minimal among the positive integers k for which x i2+k does not

divide f̃(2). We will show that i2 + k2 6= i1.
By definition, k1 ≥ 1 is the smallest positive integer such that x i1+k1

does

not divide f̃(1). If k1 ≥ 2, then x i1+1 is a monomial strictly between x i1 and
x i2 dividing f̃(1) and therefore divides f(1). This is not possible, since there is
no divisor of f between x i1 and x i2 , so k1 must be 1. Thus, i2 = i1 + 1. The

condition i2 + k2 = i1 is therefore equivalent to k2 = `− 1. Consequently, we
can show that i2 + k2 6= i1 by showing that k2 6= `− 1.

If k2 = `− 1, then every variable in

M =
¦

x i2
, x i2+1, . . . , x i2+`−2

©

must divide f̃(2). Now, M contains `− 1 distinct variables, while f̃(2) contains
m− 1 < `− 1 distinct variables. This is a contradiction and we conclude that
k2 < `− 1.

It follows that i2 + k2 6= i1, so

h(2) = x i1 h̃(2) = (−1)k1+k2 c · x i2+k2
· x i1 x i2 · · · x im

is a square-free term in SFm+1. Notice that i2 + k2 = i1 + k1 + k2. Defining
k = k1 + k2, we have

h(2) = (−1)k c · x i1+k · x i1 x i2 · · · x im ∈ SFm+1.

From minimality of k1 and k2 it follows that k is the smallest positive integer
such that x i1+k does not divide f . We conclude that, for g = g(1) + g(2) ∈ Im+1
and h= h(2) ∈ SFm+1, f = g + h is a decomposition as described in property 2
of Theorem 81.

The next lemma generalizes the result of Lemma 82 to the case where the
repeated index is any of i1, . . . , im.

Lemma 83. Suppose that Theorem 81 holds for some fixed 2 ≤ m < `. Let
f = c · x ir · x i1 x i2 · · · x im be an almost square-free term in ASFm+1 with repeated
factor x ir . Then there exists a decomposition f = g + h, where g ∈ Im+1 and
h ∈ SFm+1 are as described in property 2 of Theorem 81.
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Proof. For all k ∈ Z, let Sk : R → R be the Fp-algebra automorphism defined
by x i 7→ x i+k. Let Fhom = ( f1, . . . , fs) be as defined in Section 4.1. We first note
that Fhom is Sk-invariant in the sense that Sk({ f1, . . . , fs}) = { f1, . . . , fs} for all
k ∈ Z. (Note that Sk does not necessarily map fi to fi .) From Lemma 53 we see
that Im+1 is Sk-invariant as well.

Let f ′ = S1−ir ( f ). Then f ′ = c·x2
j1

x j2 · · · x jm , where we set jk = ik−1+r + 1− ir

for all 1 ≤ k ≤ m. (The inner k+ 1− r wraps around to 1 at m.) Observe that
j1 < · · · < jm, so we can now apply Lemma 82 to write f ′ = g ′ + h′, where
g ′ ∈ Im+1 and

h′ = (−1)k c · x j1+k · x j1 x j2 · · · x jm ∈ SFm+1.

Here, k is the smallest positive integer such that x j1+k does not divide f ′. Let

g = S ir−1
�

g ′
�

and h = S ir−1
�

h′
�

. By construction, we have f = S ir−1
�

f ′
�

=
g + h. Since Im+1 is Sk-invariant, we have g ∈ Im+1. Moreover,

h= (−1)k c · x ir+k · x i1 x i2 · · · x im ∈ SFm+1.

Note that x ir+k′ divides f if and only if x j1+k′ divides f ′, so k is also the smallest
positive integer such that x ir+k does not divide f . We conclude that f = g + h
is a decomposition as described in property 2 of Theorem 81.

The following lemma is the analogon of Lemma 82 for the case m= `.

Lemma 84. Suppose that Theorem 81 holds for m= `. Let f = c·xr ·x1 x2 · · · x` be
an almost square-free term in ASF`+1 with repeated factor xr , where r ∈ {1,2}.
Then f ∈ I`+1.

Proof. Let f(1) = f and define r ′ = 2 if r = 1 and r ′ = 1 if r = 2. Then

f̃(1) = f /xr ′ = c · xr · xr x3 · · · x` ∈ASF`.

By assumption, we can write f̃(1) = g̃(1) + h̃(1) such that g̃(1) ∈ I` and

h̃(1) = (−1)k1 c · xr+k1
· xr x3 · · · x` ∈ SF`,

where k1 is the minimal positive integer such that xr+k1
does not divide f̃(1).

Since xr x3 · · · x` is divisible by every x i except for xr ′ , h̃(1) can only be square-
free if r + k1 = r ′. Let g(1) = xr ′ g̃(1) ∈ I`+1 and let

h(1) = xr ′ h̃(1) = (−1)k1 c · x2
r ′ · x3 · · · x` ∈ASF`+1.

Let f(2) = h(1) and f̃(2) = f(2)/xr ∈ ASF`. By assumption, we can write f̃(2) =
g̃(2) + h̃(2), where g̃(2) ∈ I`+1 and

h̃(2) = (−1)k1+k2 c · xr ′+k2
· xr ′ x3 · · · x` ∈ SF`,
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where k2 ≥ 1 is the minimal positive integer such that xr ′+k2
does not divide

f̃(2). The only possibility for h̃(2) to be square-free is if r ′ + k2 = r. Defining
h(2) = xr h̃(2), we find

h(2) = (−1)k1+k2 c · x2
r · xr ′ x3 · · · x`

= (−1)k1+k2 c · xr · x1 x2 · · · x`
= (−1)k1+k2 f(1)

.

Now, r + k1 = r ′ = r ′ and r ′ + k2 = r = r imply

k1 + k2 = (r ′ − r) + (r − r ′) = 0.

Since k1 and k2 are positive and both strictly smaller than `, it follows that
k1 + k2 = `. But ` is odd, so h(2) = − f(1). We therefore have

f(1) = g(1) + h(1)
= g(1) + f(2)
= g(1) + g(2) + h(2)
= g(1) + g(2) − f(1)

From these equations, we obtain 2 f(1) = g(1) + g(2) ∈ I`+1. Notice that 2 is
invertible in Fp, so f = f(1) ∈ I`+1.

Similarly to how Lemma 83 extends Lemma 82, the next lemma extends
Lemma 84 to the case where the repeated index is any of 1, . . . ,`.

Lemma 85. Suppose that Theorem 81 holds for m= `. Let f = c · xr · x1 x2 · · · x`
be an almost square-free term in ASF`+1 with repeated factor x r . Then f ∈ I`+1.

Proof. Let Sk : R → R be the Fp-algebra automorphism defined in the proof
of Lemma 83. Similar to the proof of Lemma 83, we can write S1−ir ( f ) =
c · x2

j1
x j2 · · · x jm for indices j1 < · · · < jm. By Lemma 84, S1−ir ( f ) is in I`+1.

Since I`+1 is Sk-invariant, we conclude that f ∈ I`+1.

Lemma 86. Suppose that Theorem 81 holds for some fixed m> `. Then any term
f = cxα ∈Rm+1 is in Im+1.

Proof. Let x i be a monomial dividing f and let f̃ = f /x i ∈Rm. By assumption,
we can write f̃ = g̃ + h̃ such that g̃ ∈ Im and h̃ ∈ SFm. But SFm = {0}, since
there exist no square-free terms of degree> `. Thus, f = x i f̃ = x i g̃ ∈ Im+1.

We are now in a position to prove the theorem.
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Proof of Theorem 81. The proof is by induction on m≥ 0. Note that in order to
prove Im + SFm = Rm, it suffices to show that every monomial xα ∈ Rm can
be written as a sum of polynomials in Im and SFm. The decomposition of a
polynomial in Rm is then simply an Fp-linear combination of the decomposition
of its monomials.

Base case m = 0. For m = 0 we have R0 = SF0 = Fp and I0 = {0}, so
R0 = I0 +SF0.

Base case m = 1. If m = 1, then I1 = {0}. All monomials in R1 are
necessarily square-free, so R1 = I1 +SF1.

Base case m = 2. Let f = x i x j be a monomial in R2. If i 6= j, then f
is already square-free and can be written as f = g + h for g = 0 ∈ I2 and
h = f ∈ SF2. If i = j, then f is almost square-free and can be written as
f = g + h for g = x2

i + x i x i+1 ∈ I2 and h = −x i x i+1 ∈ SF2. Note that this
decomposition satisfies property 2 of the theorem.

Induction step. Assume that the theorem holds for some fixed m ≥ 2. We
want to show that properties 1 and 2 of the theorem hold for m+ 1 as well. To
this end, let f = xα be a monomial in Rm+1. We proceed by case analysis on m.

• Suppose 2 ≤ m < `. If f is almost square-free, then both f ∈ Im+1 +
SFm+1 and property 2 follow from Lemma 83. Otherwise, let x i be a
monomial that divides f and define f̃ /x i ∈ Rm. By the induction hy-
pothesis, we can write f̃ = g̃ + h̃, where g̃ ∈ Im and h̃ ∈ SFm. Let
g = x i g̃ ∈ Im+1 and h = x i h̃. Then either h ∈ SFm+1 or h ∈ ASFm+1.
In the latter case, Lemma 83 implies h ∈ Im+1+SFm+1, so in both cases,
we have f = g + h ∈ Im+1 +SFm+1.

• Suppose m= `. If f is almost square-free, then it follows from Lemma 85
that f ∈ Im+1 ⊆ Im+1 + SFm+1. Otherwise, let f̃ = f /x i ∈ Im for some
monomial x i dividing f . By the induction hypothesis, there exist g̃ ∈ Im
and h̃ ∈ SFm such that f̃ = g̃ + h̃. The only square-free monomial of
degree m = ` is x1 · · · x`, so h̃ must be divisible by x1, . . . , x`. Define
g = x i g̃ ∈ Im+1 and h = x i h̃ ∈ ASFm+1. Since h is almost square-free,
it follows from Lemma 85 that h ∈ Im+1. Therefore, f = g + h ∈ Im+1 ⊆
Im+1 +SFm+1.

• Suppose m > `. It follows immediately from Lemma 86 that f ∈ Im+1 ⊆
Im+1 +SFm+1.

In all cases, we find that properties 1 and 2 hold, so the theorem holds for
m+ 1 as well.

The next result shows that the sums Rm = Im + SFm from Theorem 81
are actually direct sums, in the sense that Im ∩ SFm = {0} for all m ≥ 0. As a
by-product of the proof, we also learn that the generators Fhom = ( f1, . . . , f`) of
I form a regular sequence.
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Lemma 87. Let p ≥ 3 be prime, let `≥ 3 be odd, and let I = 〈Fhom〉 be the ideal
defined in Section 4.1. The Direct Sum Claim (Claim 75) holds for all m ≥ 0.
That is, Rm = Im⊕SFm for all m≥ 0. Additionally, Fhom = ( f1, . . . , f`) forms a
regular sequence.

Proof. Observe that f1, . . . , f` is a sequence of homogeneous polynomials, all of
degree 2. Therefore, Lemma 56 implies that for all m ≥ 0, dimF (Rm/Im) =
dimFRm−dimF Im is bounded from below by the m-th coefficient of the power
series 1

(1−t)`
·
∏`

k=1

�

1− t2
�

. Working out this power series, we find that

∏`
k=1

�

1− t2
�

(1− t)`
=
(1+ t)` (1− t)`

(1− t)`
= (1+ t)` =

∞
∑

m=0

�

`

m

�

· tm,

so dimFRm − dimF Im ≥
�

`
m

�

. Simultaneously, the equality Rm = Im + SFm

from Theorem 81 implies dimFRm ≤ dimF Im + dimFSFm = dimF Im +
�

`
m

�

.
Combining the two inequalities yields dimFRm = dimF Im + dimFSFm.

We can now conclude two things. First, Im and SFm must be disjoint,
except for the zero vector, from which we obtain that the sum Rm = Im+SFm
is a direct sum. Second, the inequality in Lemma 56 is in fact an equality for
f1, . . . , f`, so this sequence of polynomials is regular.

The following corollary follows immediately from Corollary 57.

Corollary 88. Let p ≥ 3 be prime and let ` ≥ 3 be odd. The ideal I = 〈Fhom〉
defined in Section 4.1 has ideal degree 2`.

A consequence of Corollary 88 is that the ideal degrees related to a single
round of ATRAPOS is 2` when ` > 3 is not divisible by 3.

Remark 89. Whenever ` ≥ 3 is divisible by 3, one can consider the homoge-
neous variant of the ideal induced by a single round of ATRAPOS. (This ideal is
obtained by taking the top homogeneous parts of the polynomials g1, . . . , g` that
arise from the “natural” modeling of ATRAPOS in Section 4.1.) It turns out that,
just like when ` is not divisible by 3, these homogeneous ideals are generated
by regular sequences. Hence, the ideal degree corresponding to a single round
of ATRAPOS is 2` for all ` ≥ 3. A formal proof of this fact is beyond the scope
of the thesis, but the reader is encouraged to adapt the techniques presented in
this chapter to the case where `≥ 3 is a multiple of 3.
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Chapter 5

Multi-Round Analysis

This chapter extends the results of Chapter 4 to multiple rounds of ATRAPOS. Let
Fhom = ( f1, . . . , f`) be the homogeneous system corresponding to a single round
of ATRAPOS, assuming that ` > 3 is odd and not divisible by 3. A key property of
the polynomials in Fhom is that they form a regular sequence of homogeneous
polynomials of the same degree. Many of the results in this chapter only rely on
this property and do not use further structure of Fhom. We will therefore state
many of the results in terms of regular sequences of homogeneous polynomials
of the same degree.

Section 5.1 discusses the polynomial system corresponding to R rounds of
ATRAPOS. Section 5.2 is concerned with compositions of regular systems of
polynomials having the same degree. Next, Section 5.3 shows that “small per-
turbations” of these regular systems, obtained by adding lower degree terms,
have the same ideal degree as the original regular system. Section 5.4 then com-
bines these results to show that the ideal corresponding to R rounds of ATRAPOS

has ideal degree 2`R.

5.1 Introduction

In Section 4.1, we worked out the polynomials Finh = (g1, . . . , g`) in the outer
part of the state after applying the j-th round of ATRAPOS on the input state

a=





a0,2 a1,2 · · · a`−1,2
a0,1 a1,1 · · · a`−1,1
x1 x2 · · · x`



 .

(We assume that ` > 3 is odd and not divisible by 3.) Note that g1, . . . , g` implic-
itly depend on the round constant c j . We therefore write F j,inh =

�

g j1, . . . , g j`

�

to emphasize this dependence. Using this notation, applying ATRAPOS [R] to a
yields a state whose outer part is given by the composition FR,inh ◦ · · · ◦F1,inh.
We could similarly write F j,hom =

�

f j1, . . . , f j`

�

, for the top homogeneous parts
of F j,inh. However, in the previous chapter, we saw that the top homogeneous
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parts of g j1, . . . , g j` are independent of j, since they do not involve the round
coefficient c j . The top homogeneous parts of F j,inh can therefore be unambigu-
ously denoted by Fhom = ( f1, . . . , f`).

One may expect that the top homogeneous parts of the polynomials in
FR,inh ◦ · · · ◦F1,inh can be obtained by iterating Fhom R times. That is, one may

expect that the top homogeneous parts of FR,inh ◦ · · · ◦F1,inh are given by F (R)hom
(see Definition 11). It turns out that this is indeed the case, but this is not a triv-
ial fact. The following example shows that, for arbitrary g ∈ (K[x1, . . . , xn])

n

with top homogeneous parts f ∈ (K[x1, . . . , xn])
n, the top homogeneous parts

of g ◦ g are not generally equal to f ◦ f.

Example 90. Let K be an arbitrary field and let

g= (x − y + 1, x − y) ∈ (K[x , y])2 .

The top homogeneous parts of g are equal to

f= (x − y, x − y) ∈ (K[x , y])2 .

We have g ◦ g = (2,1), but f ◦ f = (0,0), so the top homogeneous parts of g ◦ g
are certainly not equal to f ◦ f. ◊

The reason that the top homogeneous parts of g ◦ g in Example 90 are not
equal to f ◦ f is that the polynomials f = (x − y, x − y) do not form a regular
sequence. In the next sections, we will see that if f= (x − y, x − y) is a regular
sequence of polynomials of the same degree, the top homogeneous parts of g◦g
are, in fact, equal to f ◦ f.

Before continuing, we introduce some notation. First, in the remainder of
this chapter, we let K be an arbitrary field and let R= K[x1, . . . , xn] be a poly-
nomial ring. For the next part, suppose that g= (g1, . . . , gs) ∈Rs is a sequence
of polynomials with top homogeneous parts f = ( f1, . . . , fs) ∈ Rs. (That is,
fi = (gi)top for all 1≤ i ≤ s.) If f is a regular sequence of homogeneous polyno-
mials of the same degree, then many properties of f (e.g. the leading term ideal
or ideal degree) are the same for g. Thus, writing εi = gi− fi for all 1, . . . , s, we
can view g= ( f1 + ε1, . . . , fs + εs) as a “small perturbation” of f.

Definition 91. Let f = ( f1, . . . , fs) ∈ Rs be a regular sequence of d-th de-
gree homogeneous polynomials. Given polynomials ε1, . . . ,εs ∈ R, we call
g = ( f1 + ε1, . . . , fs + εs) ∈ Rs a small perturbation of f if degεi < d for all
1≤ i ≤ s.

If a property of f in Definition 91 is the same for any small perturbation g, we
say that the property is invariant under small perturbations. For example, in the
next sections we will see that the leading term ideal or ideal degree of regular
sequences of homogeneous polynomials of the same degree are invariant under
small perturbations.
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5.2 Compositions of Homogeneous Regular Systems

In this section, we prove that, given a regular sequence f = ( f1, . . . , fn) of
d f -th degree homogeneous polynomials in R, and another regular sequence
h = (h1, . . . , hn) of dh-th degree homogeneous polynomials in R, the sequence
h1(f), . . . , hn(f) again forms a regular sequence of dhd f -th degree homogeneous
polynomials.

We first show that the top homogeneous part of compositions involving reg-
ular sequences behave predictably.

Lemma 92. Let f1, . . . , fn be a regular sequence of polynomials in R. Let 0≤ k <
n. If h ∈ K[xn−k, . . . , xn] is a polynomial such that h

�

[ fn−k]Q , . . . , [ fn]Q
�

= 0 in
Q=R/ 〈 f1, . . . , fn−k−1〉, then h= 0.

Proof. Let m= deg h. By induction on (m, k) (with respect to the lexicographical
ordering), we show that h= 0 holds for all m ∈ {−∞}∪Z≥0 and 0≤ k ≤ n.

Base case. If m ∈ {−∞, 0} and 0 ≤ k < n, then h = c for some c ∈ K . It
follows that [c]Q = h

�

[ fn−k]Q , . . . , [ fn]Q
�

= 0 and we conclude that c = 0.
Induction Step. Now, let m > 0 and 0 ≤ k < n. Suppose that the lemma

holds for all
�

m′, k′
�

< (m, k). Write h = xn−kq + r with deg q ≤ deg h− 1 and
r ∈ K[xn−k+1, . . . , xn]. Then h

�

[ fn−k]Q , . . . , [ fn]Q
�

= 0 implies the equality
[ fn−k]Q q
�

[ f1]Q , . . . , [ fn]Q
�

+ r
�

[ fn−k+1]Q , . . . , [ fn]Q
�

= 0. Passing to the quo-
tient space Q′ = R/ 〈 f1, . . . , fn−k〉, we find that r

�

[ fn−k+1]Q′ , . . . , [ fn]Q′
�

= 0.
If k = 0, then r ∈ K , so deg r ≤ 0. If k > 0, then r ∈ K

�

xn−(k−1), . . . , xn

�

.
In both cases, we may apply the induction hypothesis to obtain r = 0. This
yields [ fkq ( f1, . . . , fn)]Q = 0. Since [ fk]Q is a non-zero-divisor, we must have
[q ( f1, . . . , fn)]Q = 0. The induction hypothesis gives q = 0, and we conclude
that h= 0.

Proposition 93. Let f = ( f1, . . . , fn) ∈ Rn be a regular sequence of d-th degree
homogeneous polynomials and let g = ( f1 + ε1, . . . , fn + εn) ∈Rn be a small per-
turbation of f. Let h ∈R be an arbitrary polynomial. Then, the top homogeneous
component of h◦g is given by (h( f1 + ε1, . . . , fn + εn))top = htop( f1, . . . , fn). More-
over, the composition h( f1 + ε1, . . . , fn + εn) has degree d · deg h.

Proof. The statement is trivial for h= 0, so we assume h 6= 0. Write h=
∑

α cαx
α

so that h(g) =
∑

α cαg
α. Observe that (h(g))d ′ = 0 for all d ′ > d · deg h, and

(h(g))d·deg h =
�

htop(g)
�

d·deg h = htop( f1, . . . , fn). Thus, it suffices to show that
htop( f1, . . . , fn) is non-zero. If htop( f1, . . . , fn) = 0, then Lemma 92 (with k =
n − 1 and Q = R/ 〈0〉) implies htop = 0. This is a contradiction (h 6= 0), so
htop( f1, . . . , fn) must be non-zero. This proves the proposition.

The main trick in this section is to introduce auxiliary variables y1, . . . , yn
to reduce the degrees of the involved polynomials.
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Solving the polynomial system

h1(f(x1, . . . , xn)) = 0
...

hn(f(x1, . . . , xn)) = 0

in K[x1, . . . , xn] is equivalent (in a precise sense that we will discuss shortly) to
first solving

h1(y1, . . . , yn) = 0
...

hn(y1, . . . , yn) = 0

in K[y1, . . . , yn] (or K[x1, . . . , xn, y1, . . . , yn]) and then solving

f1(x1, . . . , xn) = y1

...

fn(x1, . . . , xn) = yn

in K[x1, . . . , xn, y1, . . . , yn].
To formalize the introduction of the auxiliary variables, we define S =

K[x1, . . . , xn, y1, . . . , yn]. Solving the system h(f(x)) = 0 in R is equivalent to
solving h(y) = f(x)−y= 0 in S, in the sense that their affine varieties are equal
if we only consider the x-coordinates of the affine variety of the second system.
Formally, let I = 〈h(f)〉 ⊆R andJ = 〈h(y), f− y〉 ⊆ S. Then V (I) = πn(V (J )),
where πn : K2n → Kn is the projection mapping (a1, . . . , an, b1, . . . , bn) to the
n-tuple (a1, . . . , an). In fact, the restriction πn : V (J ) → V (I) is a bijection,
since every (a1, . . . , an) ∈ V (I) uniquely determines (b1, . . . , bn) ∈ Kn such that
(a1, . . . , an, b1, . . . , bn) ∈ V (J ).

However, we’re ultimately interested in the ideal degree of I and the mere
fact that V (I) and V (J ) are in bijection does not guarantee that the ideal de-
grees of I and J (in their respective polynomial rings) are equal. As an exam-
ple, consider the ideals 〈x〉 and




x2
�

in the polynomial ring K[x]. Both ideals
have the same affine variety (V (〈x〉) = V

�


x2
��

= {0}), but their ideal degrees
differ, since K[x]/ 〈x〉 = spanK {1} and K[x]/




x2
�

= spanK {1, x}. The follow-
ing lemma shows that R/I and S/J are isomorphic as K-algebras, from which
it follows that dimK S/J = dimK R/I. The lemma actually proves a slightly
stronger result, which will be needed to prove that h1(f), . . . , hn(f) forms a reg-
ular sequence.

Lemma 94. Let S = K[x1, . . . , xn, y1, . . . , yn]. Let f = ( f1, . . . , fn) ∈ Rn and
h= (h1, . . . , hn) ∈Rn be polynomial sequences. For all 0≤ i ≤ n, let

Ji = 〈h1(y), . . . , hi(y), f1 − y1, . . . , fn − yn〉 ⊆ S
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and
Ii = 〈h1(f), . . . , hi(f)〉 ⊆R.

Then S/Ji
∼= R/Ii as K-algebras.

Proof. Fix 0 ≤ i ≤ n and let φi : S →R/Ii be the unique K-algebra homomor-
phism defined by x j 7→

�

x j

�

R/Ii
and y j 7→
�

f j

�

R/Ii
for all 1 ≤ j ≤ n. This

homomorphism is surjective, since for any [ f ] ∈R/Ii we have f ∈R ⊆ S and
φi( f ) = [ f ]R/Ii

. Moreover, we claim that Kerφi = Ji , from which Lemma 94
follows using the First Isomorphism Theorem for Algebras (see Figure 5.1).

S R/Ii

S/Ji

can

φi

ϕi

∼

Figure 5.1: Depiction of the (surjective) K-algebra homomorphism φi and the
induced isomorphism ϕi . Here, “can” denotes the canonical homomorphism
which maps f to its equivalence class [ f ].

We show that Ji ⊆ Kerφi (for all 1 ≤ i ≤ n) by showing that φi maps
the generators h1(y), . . . , hi(y), f1 − y1, . . . , fn − yn of Ji to zero. First, note
that for all 1 ≤ j ≤ i, we have φi

�

h j(y)
�

= h j(φi(y1), . . . ,φi(yn)), since φi
is a K-algebra homomorphism. By definition, h j(φi(y1), . . . ,φi(yn)) equals
h j

�

[ f1]R/Ii
, . . . , [ fn]R/Ii

�

=
�

h j( f1, . . . , fn)
�

R/Ii
. (The last equality is again

a consequence of the canonical homomorphism can: R → R/Ii being a K-
algebra homomorphism.) It follows that φi

�

h j(y)
�

=
�

h j( f1, . . . , fn)
�

R/Ii
=

�

h j(f)
�

R/Ii
= 0. We also have

φi

�

f j − y j

�

= φi

�

f j

�

−φi

�

y j

�

=
�

f j

�

R/Ii
−
�

f j

�

R/Ii
= 0

for all 1≤ j ≤ i. Since φi maps a basis of Ji to zero, we must have Ji ⊆ Kerφi .
For the converse inclusion, let g =

∑

α,β cα,βxαyβ ∈ Kerφi . Then φi(g) =
�

∑

α,β cα,βxαfβ
�

R/Ii
= 0 implies that

∑

α,β cα,βxαfβ ∈ Ii , so there exist polyno-

mials u1, . . . , ui ∈R such that

∑

α,β

cα,βxαfβ =
i
∑

j=1

u jh j(f). (5.1)

It follows from
�

y j

�

S/Ji
=
�

f j

�

S/Ji
(for all 1≤ j ≤ n) that

[g]S/Ji
=





∑

α,β

cα,βxαyβ





S/Ji

=





∑

α,β

cα,βxαfβ





S/Ji

.
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Applying Equation (5.1), followed by the equality
�

y j

�

S/Ji
=
�

f j

�

S/Ji
again,

then yields

[g]S/Ji
=





i
∑

j=1

u jh j(f)





S/Ji

=





i
∑

j=1

u jh j(y)





S/Ji

= 0.

It follows that g ∈ Ji and Kerφi ⊆ Ji .
We now know that Kerφi = Ji . The First Isomorphism Theorem for Alge-

bras (Proposition 27) implies that the K-algebra homomorphism ϕi : S/Ji →
R/Ii defined by

�

x j

�

S/Ji
7→
�

x j

�

R/Ii
and
�

y j

�

S/Ji
7→
�

f j

�

R/Ii
for all 1≤ j ≤ n

is a well-defined K-algebra isomorphism.

Lemma 94 allows us to reason about R/ 〈h(f)〉 using the quotient space
S/ 〈h(y), f− y〉. By assumption, h1, . . . , hn is a regular sequence of polynomi-
als in R. It is immediate that h1(y), . . . , hn(y) forms a regular sequence in
K[y1, . . . , yn] and Lemma 60 implies that the latter sequence also forms a reg-
ular sequence in S = K[x1, . . . , xn, y1, . . . , yn]. This insight, together with the
isomorphisms ϕ0, . . . ,ϕn : S/Ji →R/Ii from Lemma 94 allows us to prove an
important result on the composition of regular sequences.

Theorem 95. Let f = ( f1, . . . , fn) ∈ Rn and h = (h1, . . . , hn) ∈ Rn be regular
sequences of homogeneous polynomials. Then h1(f), . . . , hn(f) also forms a regular
sequence in R.

Proof. To show that h1(f), . . . , hn(f) forms a regular sequence in R, we need
to show that In = 〈h1(f), . . . , hn(f)〉 is a proper ideal (i.e. it does not equal
R) and that for all 1 ≤ i ≤ n, [hi(f)] is a non-zero-divisor for R/Ii−1. Here,
Ii−1 = 〈h1(f), . . . , hi−1(f)〉 ⊆R is as in the proof of Lemma 94.

Recall that In is a proper ideal of R if and only if 1 /∈ In. Every element of In
can be written as

∑n
i=1 uihi(f), where u1, . . . , un ∈R. Since f and h form regular

sequences, their degrees must be strictly positive (Remark 59). Moreover, the
polynomials in f and h are homogeneous, so the 0-th degree homogeneous parts
of these polynomials are zero. Consequently, the 0-th degree homogeneous part
of every hi(f) is zero. Taking the 0-th degree homogeneous part of both sides
of
∑n

i=1 uihi(f) = 1 yields the contradiction 0= 1. We conclude that 1 /∈ In.
Next, suppose that [u · hi(f)]R/Ii−1

= 0 for some 1 ≤ i ≤ n and u ∈ R. Let
the ideal

Ji−1 = 〈h1(y), . . . , hi−1(y), f1 − y1, . . . , fn − yn〉 ⊆ S
and the K-algebra isomorphism ϕi−1 : S/Ji−1 → R/Ii−1 be as in the proof of
Lemma 94. Note that ϕi−1

�

[u · hi(y)]S/Ji−1

�

= [u · hi(f)]R/Ii−1
. Therefore,

[u · hi(y)]S/Ji−1
= ϕ−1

i−1

�

[u · hi(f)]R/Ii−1

�

= ϕ−1
i−1(0) = 0.

Since [hi(y)]S/Ji−1
is a non-zero-divisor, we must have [u]S/Ji−1

= 0. Applying
ϕi−1 to both sides then yields [u]R/Ii−1

= ϕi−1

�

[u]S/Ji−1

�

= 0, proving that
every [hi(f)]R/Ii−1

is a non-zero-divisor.
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Corollary 96. Let f1, . . . , fn ∈R be a regular sequence of d f -th degree polynomi-
als and let h1, . . . , hn ∈R be a regular sequence of dh-th degree polynomials. Then
h1(f), . . . , hn(f) forms a regular sequence of homogeneous dhd f -th degree polyno-
mials.

Proof. It follows from Proposition 93 and Theorem 95 that h1(f), . . . , hn(f) forms
a regular sequence of dhd f -th degree polynomials. Homogeneity of the poly-
nomials in the composition follows from the homogeneity of the polynomials
f1, . . . , fn and h1, . . . , hn.

Corollary 97. Let f = ( f1, . . . , fn) ∈ Rn be a regular sequence of d-th degree
homogeneous polynomials. For all i ≥ 0, the i-th iteration f(i) =

�

f (i)1 , . . . , f (i)n

�

∈
Rn of f forms a regular sequence of homogeneous d i-th degree polynomials.

Proof. The proof is by induction on i ≥ 0. We know from Corollary 58 that
f(0) = (x1, . . . , xn) forms a regular sequence of linear homogeneous polynomials.
Next, suppose that f(i) forms a regular sequence of d i-th degree homogeneous
polynomials for some i ≥ 0. By Corollary 96, f(i+1) = f ◦ f(i) forms a regular
sequence of homogeneous polynomials of degree d · d i = d i+1.

The results obtained so far allow us to compute the ideal degree of the
iterations of a polynomial system consisting of homogeneous d-th degree poly-
nomials.

Theorem 98. Let f1, . . . , fn ∈R be a regular sequence of homogeneous d-th degree
polynomials. For all i ≥ 0, let f(i) =

�

f (i)1 , . . . , f (i)n

�

∈Rn be the i-th iteration of f.

The ideal



f(i)
�

has ideal degree d in.

Proof. Fix i ≥ 0 By Corollary 97, f (i)1 , . . . , f (i)n forms a regular sequence of d i-th
degree homogeneous polynomials. It follows from Corollary 57 that




f(i)
�

has
ideal degree d in.

5.3 Small Perturbations of Regular Systems

Let f = ( f1, . . . , fs) ∈ Rs be a regular sequence of d-th degree homogeneous
polynomials. We know from Corollary 57 that the ideal 〈f〉 = 〈 f1, . . . , fs〉 has
ideal degree ds. Recall that we call g = ( f1 + ε1, . . . , fn + εs) ∈ Rs a small
perturbation of f if degεi < d for all 1 ≤ i ≤ s. In this section, we will show
that the ideal 〈g〉 = 〈 f1 + ε1, . . . , fs + εs〉 generated by the small perturbation g
of f has the same ideal degree as 〈f〉.

We know from Lemma 38 that R/ 〈f〉 is isomorphic as a K-vector space to
spanK{xα ∈R | xα /∈ 〈LT (〈f〉)〉} for an arbitrary monomial ordering≥. Similarly,
R/ 〈g〉 ∼= spanK{xα ∈R | xα /∈ 〈LT (〈g〉)〉} as K-vector spaces. We can therefore
show that dimK R/ 〈f〉= dimK R/ 〈g〉 by showing that 〈LT (〈f〉)〉= 〈LT (〈g〉)〉 for
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some monomial ordering ≥. This equality turns out to hold true when ≥ is an
arbitrary graded monomial ordering. We prove it by separately showing the
inclusions 〈LT (〈f〉)〉 ⊆ 〈LT (〈g〉)〉 and 〈LT (〈g〉)〉 ⊆ 〈LT (〈f〉)〉. We start by proving
the former inclusion, which is the easiest of the two.

Lemma 99. Let f= ( f1, . . . , fs) ∈Rs be a regular sequence of d-th degree homoge-
neous polynomials and let g = ( f1 + ε1, . . . , fs + εs) ∈Rs be a small perturbation
of f. Then 〈LT (〈f〉)〉 ⊆ 〈LT (〈g〉)〉 with respect to any graded monomial ordering ≥
on R.

Proof. Observe that it suffices to show the inclusion LT (〈f〉)\{0} ⊆ LT (〈g〉), since
〈LT (〈f〉)〉 and 〈LT (〈g〉)〉 are both ideals. Every non-zero element in LT (〈f〉) is
of the form h = LT

�∑s
i=1 ui fi

�

for some polynomials u1, . . . , us ∈ R. For all
1≤ i ≤ s and d ′ ≥ 0, we define (ui)d ′ to be the homogeneous part of degree d ′

of ui . Every ui can then be written as the finite sum ui =
∑

d ′≥0 (ui)d ′ , so

h= LT

� s
∑

i=1

∑

d ′≥0

(ui)d ′ fi

�

= LT

�

∑

d ′≥0

s
∑

i=1

(ui)d ′ fi

�

.

Since f1, . . . , fs are homogeneous polynomials of degree d, every (ui)d ′ fi either
has degree d ′ + d or is zero. It follows that h = LT

�∑s
i=1 (ui)d0

fi

�

, where d0

is the largest integer d ′ for which
∑s

i=1 (ui)d ′ fi is non-zero. (Such a d0 exists,
since f 6= 0.) This sum must have degree d0 + d. The degree of

∑s
i=1 (ui)d0

εi
is strictly smaller than d0 + d, since the εi have degree < d. Therefore,

h= LT

� s
∑

i=1

(ui)d0
fi +

s
∑

i=1

(ui)d0
εi

�

∈ LT (〈g〉).

We conclude that 〈LT (〈f〉)〉 ⊆ 〈LT (〈g〉)〉.

Lemma 100. Let f= ( f1, . . . , fs) ∈Rs be a regular sequence of d-th degree homo-
geneous polynomials and let g = ( f1 + ε1, . . . , fs + εs) ∈ Rs be a small perturba-
tion of f. For all u1, . . . , us ∈R, we have

� s
∑

i=1

ui ( fi + εi)

�

top

∈ 〈f〉 (5.2)

with respect to any graded monomial ordering≥ on R. Consequently, 〈LT (〈g〉)〉 ⊆
〈LT (〈f〉)〉.

Proof. We first show how the inclusion 〈LT (〈g〉)〉 ⊆ 〈LT (〈f〉)〉 follows from the
first part of the lemma. As in the proof of Lemma 99, it suffices to show the
inclusion LT (〈g〉) \ {0} ⊆ LT (〈f〉). To this end, let h =

∑s
i=1 ui ( fi + εi) be an

arbitrary non-zero polynomial in 〈g〉. By Equation (5.2), htop ∈ 〈f〉. We conclude
that LT (h) = LT

�

htop

�

∈ LT (〈f〉).
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It remains to show that Equation (5.2) holds for all u1, . . . , us ∈ R. The
proof is by induction on d∗ := max1≤i≤s deg ui ≥ −∞. In the base case d∗ =
−∞, all ui are zero, so Equation (5.2) holds trivially. For the induction step,
let d∗ ≥ 0 and suppose that Equation (5.2) holds for all u′1, . . . , u′s ∈ R with
max1≤i≤s deg u′i < d∗. We write

s
∑

i=1

ui ( fi + εi) =
d∗
∑

d ′=0

s
∑

i=1

(ui)d ′ ( fi + εi)

=
s
∑

i=1

(ui)d∗ fi

︸ ︷︷ ︸

=:A

+
s
∑

i=1

(ui)d∗ εi

︸ ︷︷ ︸

=:B

+
d∗−1
∑

d ′=0

s
∑

i=1

(ui)d ′ fi

︸ ︷︷ ︸

=:C

+
d∗−1
∑

d ′=0

s
∑

i=1

(ui)d ′ εi

︸ ︷︷ ︸

=:D

,

where (ui)d ′ denotes the d ′-th degree homogeneous part of ui . Since both
(u1)d∗ , . . . , (us)d∗ and f1, . . . , fs are homogeneous sequences of d∗-th degree
and d-th degree polynomials, respectively, the sum

∑s
i=1 (ui)d∗ fi either has de-

gree d∗ + d or is zero. If the sum is non-zero, then
�∑s

i=1 ui ( fi + εi)
�

top =
�∑s

i=1 (ui)d∗ fi

�

top, because
∑s

i=1 (ui)d∗ εi +
∑d∗−1

d ′=0

∑s
i=1 (ui)d ′ ( fi + εi) has de-

gree strictly less than d∗+d. Otherwise, if
∑s

i=1 (ui)d∗ fi = 0, then (u1)d∗ , . . . , (us)d∗
forms a syzygy of the regular sequence. f1, . . . , fs. By Lemma 62 there exist
polynomials w11, . . . , wss ∈ R such that (ui)d∗ =

∑s
j=1 wi j f j . The wi j also sat-

isfy wi j = −w ji and wii = 0 for all 1 ≤ i, j ≤ s. Without loss of generality, we
assume that every wi j is either zero or has degree d∗ − d. We now have

B =
s
∑

i=1

(ui)d∗ εi =
s
∑

i=1

s
∑

j=1

wi j f jεi =
s
∑

i=1

vi fi ,

where vi =
∑s

j=1 w jiε j for all 1 ≤ i ≤ s. Define u′i = vi +
∑d∗−1

d ′=0 (ui)d ′ for

all 1 ≤ i ≤ s. We will show that
∑s

i=1 ui ( fi + εi) =
∑s

i=1 u′i ( fi + εi) and that
deg u′i < d∗ for all 1 ≤ i ≤ s. Note that

∑s
i=1 u′i fi = B + C . We also have

∑s
i=1 u′iεi = S + D, where S =

∑s
i=1

∑s
j=1 w jiε jεi . However,

S =
∑

1≤i< j≤s

�

wi j +w ji

�

εiε j +
s
∑

i=1

wiiε
2
i = 0,

since both sums on the right-hand side consist of zero terms. It now follows that
∑s

i=1 u′i ( fi + εi) = B+C+D =
∑s

i=1 ui ( fi + εi). (Recall that A=
∑s

i=1 (ui)d∗ fi =
0.) For all 1 ≤ i ≤ s, we have deg vi ≤ max j deg w jiε j ≤ (d∗ − d) + (d − 1) =

d∗ − 1 and deg
�

∑d∗−1
d ′=0 (ui)d ′
�

≤ d∗ − 1, so deg u′i ≤ d∗ − 1. We may therefore
use the induction hypothesis to conclude that

� s
∑

i=1

ui ( fi + εi)

�

top

=

� s
∑

i=1

u′i ( fi + εi)

�

top

∈ 〈f〉 .
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The following theorem is an immediate consequence of Lemma 99 and
Lemma 100.

Theorem 101. Let f = ( f1, . . . , fs) ∈ Rs be a regular sequence of d-th degree
homogeneous polynomials and let g = ( f1 + ε1, . . . , fs + εs) ∈ Rs be a small per-
turbation of f. Then 〈LT (〈f〉)〉 = 〈LT (〈g〉)〉 with respect to any graded monomial
ordering ≥ on R.

Theorem 102. Let f = ( f1, . . . , fs) ∈ Rs be a regular sequence of d-th degree
homogeneous polynomials and let g = ( f1 + ε1, . . . , fs + εs) ∈ Rs be a small per-
turbation of f. Then 〈f〉 and 〈g〉 have the same ideal degree, which is equal to
ds.

Proof. Fix an arbitrary graded monomial ordering ≥ on R. By Lemma 38,
R/ 〈g〉 is isomorphic as a K-vector space to S1 = spanK{xα ∈R | xα /∈ 〈LT (〈g〉)〉}.
By Theorem 101, this span equals S2 = spanK{xα ∈ R | xα /∈ 〈LT (〈f〉)〉}. Ap-
plying Lemma 38 again, we see that S2 is isomorphic as a K-vector space to
R/ 〈f〉. We now have R/ 〈g〉 ∼= S1 = S2

∼= R/ 〈f〉 (as K-vector spaces) and use
Corollary 57 to conclude that dimK R/ 〈g〉= dimK R/ 〈f〉= ds.

5.4 Compositions of Perturbed Regular Systems

This section combines and summarizes results from Section 5.2 and Section 5.3
to derive results on compositions of small perturbations of regular sequences of
d-th degree homogeneous polynomials.

We start with a proposition concerning compositions of small perturbations.

Proposition 103. Let f, f′ ∈ Rn be regular sequences of d-th and d ′-th degree
homogeneous polynomials, respectively, and let g,g′ ∈ Rn be small perturbation
of f and f′, respectively. Then, the composition f′ ◦ f is a regular sequence of d ′d-th
degree homogeneous polynomials and g′ ◦ g is a small perturbation of f′ ◦ f.

Proof. We know from Corollary 96 that f′ ◦ f forms a regular sequence of d ′d-th
degree homogeneous polynomials. Applying Proposition 93, we find that the
top homogeneous parts of g′ ◦ g are equal to f′ ◦ f. This is equivalent to g′ ◦ g
being a small perturbation of f′ ◦ f.

The following theorem summarizes the results from this chapter.

Theorem 104. Let f1, . . . , fk ∈ Rn be regular sequences such that fi consists of
di-th degree homogeneous polynomials, for all 1 ≤ i ≤ n. Let g1, . . . ,gk ∈ Rn be
small perturbations of f1, . . . , fk ∈Rn, respectively. Then the following holds:

1. The composition fk ◦· · ·◦f1 is a regular sequence of d1 · · · dk-th degree homo-
geneous polynomials and gk ◦ · · · ◦ g1 is a small perturbation of fk ◦ · · · ◦ f1.

2. The ideal 〈fk ◦ · · · ◦ f1〉 has ideal degree (d1 · · · dk)
n.
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3. The ideal 〈gk ◦ · · · ◦ g1〉 has ideal degree (d1 · · · dk)
n.

Proof. Property 1 is obtained by repeatedly applying Proposition 103. Property
2 then follows from Corollary 57. Lastly, 3 follows from Theorem 102.

Theorem 104 can be used to find the ideal degree corresponding to ATRAPOS [R].

Corollary 105. Let ` > 3 be an odd number not divisible by 3, let p ≥ 3 be a prime
number, and let R = Fp[x1, . . . , x`]. As defined in Section 5.1, let F j,inh ∈R` be
the polynomials corresponding to the j-th round of ATRAPOS. Then, the ideal



FR,inh ◦ · · · ◦F1,inh

�

corresponding to the first R≥ 1 rounds of ATRAPOS has ideal
degree 2`R.

Proof. From our discussion in Section 5.1, we know that every F j,inh ∈R` is a
small perturbation of the homogeneous system Fhom = ( f1, . . . , f`) defined in
Section 4.1. By definition, f1, . . . , f` are homogeneous polynomials of degree
d = 2. Additionally, these polynomials form a regular sequence (Lemma 87).

By Theorem 104, the ideal



FR,inh ◦ · · · ◦F1,inh

�

has ideal degree
�

∏R
i=1 d
�`
=

2`R.

5.5 Minimal Number of Rounds for ATRAPOS

We conclude this chapter by discussing the minimal number of rounds R re-
quired for ATRAPOS [R] to achieve a security of 128 bits against algebraic at-
tacks.

From the discussion in Subsection 3.2.1 we know that the complexity of
solving F (R)inh for a single solution is dominated by the FGLM step, which requires
CFGLM = dωI field operations in Fp. The conservative choiceω= 2 and dI = 2`R

(Corollary 105) together yield a conservative estimation of CFGLM = 22`R.
Given an odd `≥ 3 not divisible by 3, ATRAPOS-SPONGE has a security level

against algebraic attacks of

λ= log2

�CFGLM

P

�

= log2

�

22`R
�

= 2`R bits

with respect to field operations in Fp (addition and multiplication). The success
probability P of the attack equals 1. To obtain (at least) 128 bits of security
against algebraic attacks, we need 2`R ≥ 128. The minimum R satisfying this
equation is R =

�128
2`

�

. For KYBER (` = 17), this yields R = 4 (resulting in 136
bits of security). For DILITHIUM (`= 7), we obtain R= 10 (resulting in 140 bits
of security).

Note that these results do not yet include a security margin to account for
possible improvements to the three-step algorithm discussed in Subsection 3.2.1.
Also, there may be other attacks for which a higher number of rounds would be
required. This is, however, outside the scope of this thesis.
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Remark 106. The 128 bits of security against algebraic attacks discussed here
is with respect to field operations in Fp, while the 128 bits of security against
brute-force attacks (as stated in Section 3.1) is with respect to evaluations of the
ATRAPOS permutation. These security claims are therefore not directly compara-
ble. One way to compare both claims is to estimate and compare the complexi-
ties (using e.g. “gate equivalents”) of optimal circuits that realize the brute-force
and algebraic attacks, respectively. We will not pursue this endeavor.
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Chapter 6

Experimental Results

In Section 5.5, we estimated that the FGLM step when solving the CICO prob-
lem in Definition 70 for R-round ATRAPOS requires CFGLM = 22`R field operations
in Fp, assuming that ` > 3 is odd and not divisible by 3. Ultimately, this esti-
mated time complexity stems from the upper bound O

�

ndωI
�

for the full FGLM
algorithm (Proposition 46), which is assumed to be tight. (We use I to denote
the ideal corresponding to R-round ATRAPOS.) In this chapter we run small-
scale experiments to verify the tightness of this bound for a specific instance of
the FGLM algorithm (in Magma). We also measure the time spent on the DRL
Gröbner basis computation (using F4) and find that it is negligible compared to
the time spent on the lexicographic Gröbner basis computation (using FGLM).
Since Magma does not implement the modified FGLM algorithm discussed in
Section 2.8 (where we only solve for a single solution using an FGLM variant
that exploits sparsity), we perform our experiments using the traditional FGLM
algorithm.

The experiments were conducted using Magma (V2.28-8) [BCP97] on a
computer with an Intel i9-9900K CPU (3.60 GHz) and 64 GiB of RAM. The
code is included in Sections A.2 and A.3.

The ATRAPOS permutation defined in Chapter 3 allows either ` = 17 (for
KYBER) or ` = 7 (for DILITHIUM), but is also a permutation for any odd ` ≥ 3.
This permits us to perform small-scale experiments for small values of ` and
R. The experiments were conducted using an implementation of the ATRAPOS

permutation in Magma. The implementation uses the column shifts r0 = 0,
r1 = 1, and r2 = r1 + 1= 2. The round constants are set to c1 = 1, c2 = 2, etc.,
and p was set to the prime p = 3329 used in KYBER.

Remark 107. We state without proof that the ideals corresponding to a sin-
gle round of ATRAPOS also have ideal degree 2` if ` ≥ 3 is a multiple of three.
Moreover, the top homogeneous parts of their “natural” generators form a regu-
lar sequence of ` quadratic polynomials. For small `, this can be directly verified
by computing their Hilbert series.

A consequence is that the complexity estimate CFGLM holds for all odd `≥ 3.
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We will therefore also consider `≥ 3 divisible by three in our experiments.
See also Remark 89.

For several combinations of (odd) `≥ 3 and R≥ 1, the following steps were
performed:

1. Calculate the state a′ obtained by running ATRAPOS [R] on the input state
a = (0,0,x)T. (That is, the first two rows, corresponding to the inner
part of the state, are set to zero. The bottom row, which corresponds to
the outer part, consists of variables x1, . . . , x`.) We denote the outer part
(bottom row) of a′ by g.

2. Compute a DRL Gröbner basis for 〈g〉 ⊆ Fp[x1, . . . , x`] using the F4 algo-
rithm.

3. Convert the DRL Gröbner basis to a lexicographic Gröbner basis using the
FGLM algorithm.

The steps above were repeated five times for each combination of ` and R
to account for random fluctuations in running times.

Table 6.1 lists the mean running times for the F4 (step 2) and FGLM (step
3) steps. In all cases, the total running time is dominated by the running time
of FGLM. This observation justifies our choice of analyzing only the time com-
plexity of the FGLM step.

R= 1 R= 2 R= 3 R= 4 R= 5
`= 3 0.00s (0.00s) 0.01s (0.00s) 0.13s (0.00s) 50s (0.00s) 7h31m (0.00s)
`= 5 0.00s (0.01s) 2.40s (0.26s)
`= 7 0.01s (0.01s)
`= 9 0.15s (0.00s)
`= 11 6.35s (0.09s)
`= 13 6m36s (0.77s)

Table 6.1: Running times for F4 (gray, between parenthesis) and FGLM for
small (odd) ` ≥ 3 and R ≥ 1. The numbers listed represent the mean over five
identical experiments. Empty cells correspond to experiments that resulted in
an out-of-memory error. Experiments with R > 6 or ` ≥ 15 resulted in out-of-
memory errors as well.

The experimental results also help us reason about the actual time complex-
ity of the FGLM step (in Magma). Assuming that the FGLM implementation in
Magma requires roughly `dωI = ` ·2

ω`R field operations in Fp, it is reasonable to
estimate the time spent on FGLM by TFGLM = c` · 2ω`R for some constant c > 0.
(The actual value of c is very implementation specific, as it depends on the
combination of hardware and software used for the FGLM step.) This estimate
depends on both ` and R. Dividing TFGLM by `, we obtain TFGLM/` = c · 2ω`R,
which only depends on the product `R. Therefore, if we denote the actual run-
ning times for the FGLM step by T , we expect the points (`R, T/`) to be close
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to the curve c ·2ω`R for some c > 0 and 2≤ω≤ 3. Equivalently, for every point
(`R, T/`), we expect log2 (T/`)≈ω`R+ b, where b = log2 c.

4 6 8 10 12 14 16
10−6

10−4

10−2

100

102

104

Tfit ≈ 22.913`R−31.478

`R

T
/`

(s
)

Figure 6.1: Scatter plot of measured FGLM running times T , divided by `, as a
function of `R. The blue line denotes the fitted line.

Figure 6.1 shows T/` as a function of `R, together with a fitted curve Tfit =
2ω̂`R+b̂. The fitted curve was obtained by performing a polynomial fit of the
linear polynomial ω`R + b on the points

�

`R, log2 (T/`)
�

. For small `R, the
results may be skewed, since the memory used by the FGLM step fits completely
within the L3 cache. For this reason, only points with `R ≥ 9 were considered
for this fit. These points correspond to experiments where the memory used by
Magma exceeded the L3 cache (16 MB).

The results in Figure 6.1 are surprisingly close to our expectations. For
example, ω̂≈ 2.913, which is not too far off from the valueω= log2 7≈ 2.807
we would expect for Strassen multiplication. Note that for small `R, a larger
part of the data fits in the CPU caches, which would speed up the algorithm. If
we look at the observed running times, however, it seems that they are higher
than the predicted running times when `R is small. A possible explanation is
that the FGLM implementation in Magma involves a constant time component
(e.g. a setup phase): when `R is small, the total running time is low, so the
constant time component is relatively high, compared to the total running time.

As a concluding remark, we want to stress that these experimental results
by themselves do not constitute a proof that solving the CICO problem is hard.
They only show that the complexity of solving (small instances of) the CICO
problem using the FGLM implementation in this version of Magma agrees with
our expectations. Nevertheless, these experimental results give some assurance
that the theoretical running time TFGLM = c` · 2ω`R for the FGLM step when
solving the CICO problem is reasonable. By extension, the results give some
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assurance that the time complexity CFGLM = 22`R for the optimized FGLM variant
discussed in Section 2.8 is reasonable.
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Chapter 7

Related Work

Since the ATRAPOS-SPONGE specification has not been published yet, no prior
(publicly available) research on the security of ATRAPOS-SPONGE against alge-
braic attacks exists. There is, however, a vast amount of published research on
algebraic attacks against other cryptographic algorithms.

The application of algebraic techniques in cryptanalysis is not new. For in-
stance, the authors of a 2002 paper [CP02]modeled the AES block cipher using
an overdetermined system of (quadratic) polynomial equations. Subsequently,
they described a method to recover the secret key using an attack they call the
“eXtended Sparse Linearization” (XSL) attack. The authors conjecture that the
security of AES does not grow exponentially with the number of rounds and
that their proposed attack seems to break AES-256. However, this claim has
been disputed by [CL05].

A few years later, in 2006, [BPW06] presented a key recovery attack for AES
using Gröbner basis techniques. The authors give a polynomial modeling of
AES such that the polynomials already form a Gröbner basis with respect to the
DRL ordering. The corresponding ideal degree is 254200 ≈ 21598, which makes
obtaining a Gröbner basis with respect to the lexicographic ordering using FGLM
prohibitively expensive. This technique does therefore not break AES.

More recently, algebraic cryptanalysis using Gröbner bases has received new
attention in the context of “arithmetization-oriented” cryptography. Arithmeti-
zation-oriented primitives are used in e.g. zero-knowledge protocols and op-
erate on elements in finite fields Fp for large p. For these primitives, Gröbner
basis techniques are often assumed to be the most efficient attack techniques
[KLR24].

As an example, [KLR24] investigates the security of Anemoi, an arithmetiza-
tion-oriented permutation-based hash function, against Gröbner basis attacks.
The authors define two polynomial modelings for Anemoi. For both of these
modelings, they estimate the complexity of computing a DRL Gröbner basis as
well as the complexity of the basis conversion step using FGLM, by extrapolating
from small-scale experiments. In [CR25], an alternative modeling for Anemoi
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is presented. The authors derive complexities for both the DRL Gröbner basis
computation and the basis conversion step (based on the ideal degree). The
ideal degree is determined by counting the number of monomials in the quotient
space R/I corresponding to their polynomial modeling of Anemoi. It is unclear
whether the techniques used in [CR25] can be adapted to determine the ideal
degree of our modeling of ATRAPOS.
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Chapter 8

Conclusions

In this thesis, we described ATRAPOS-SPONGE and analyzed a specific CICO prob-
lem related to single-block preimage resistance. As we have seen, solving this
CICO problem amounts to solving a system of polynomial equations. We esti-
mated the complexity of this problem using the ideal degree corresponding to
the ATRAPOS permutation in the sponge construction.

We showed that the homogeneous ideal corresponding to a single round
of ATRAPOS is generated by a regular sequence of polynomials and used this
fact to show that the homogeneous ideal corresponding to R-round ATRAPOS is
generated by a regular sequence as well. In both cases, properties of regular
sequences were used to extend the results to the inhomogeneous case.

Ultimately, we proved that the complexity of the CICO problem for R-round
ATRAPOS is 2ω`R and used this to derive the minimum number of rounds re-
quired to obtain 128 bits of security (with respect to our CICO problem) when
ATRAPOS-SPONGE is used in KYBER and DILITHIUM.

In Chapter 6 we confirmed the theoretical results obtained in earlier chap-
ters.

8.1 Future Research

We outline three areas of interest for future research.
First, the research in this thesis is confined to instantiations of ATRAPOS

where only the bottom row of the two-dimensional state is used for the outer
part of the state (“the r = ` case”). The current ATRAPOS specification also
allows the bottom two rows to be used for the outer part (“the r = 2` case”).
In the latter case, the polynomials g1, . . . , g2` that describe the outer part of the
state after the ATRAPOS permutation (cf. Section 3.2) no longer all have the
same total degree. Many of our results depend on all gi having the same total
degree and extending the results to the r = 2` case seems non-trivial. Future
research is needed to determine the security properties of ATRAPOS in the latter
case, possibly purely experimentally.
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Second, the polynomial systems we analyzed are “critically determined” in
the sense that there are as many equations as there are unknowns. (The systems
are neither overdetermined nor underdetermined.) An adversary can force the
system to be overdetermined by simply guessing one or more unknowns and
then solving the system for the remaining variables. In the extreme case, the
attacker guesses every unknown, entirely bypassing the need for the F4/F5 and
FGLM algorithms. Anecdotally, guessing unknowns does not reduce the com-
plexity of solving the CICO problem below 128 bits, but more research is needed
to properly verify this.

Finally, the CICO problem in Definition 70 is strongly related to the preimage
resistance of ATRAPOS-SPONGE. Besides preimage resistance, second-preimage
resistance and collision resistance are also important properties for an extendable-
output function (XOF). Investigating the second-preimage resistance and colli-
sion resistance of ATRAPOS-SPONGE, for example by formulating these proper-
ties in terms of polynomial systems, would be an interesting direction for future
research.
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Appendix A

Code

A.1 Hilbert Series Computation (hilbert_series.py)

The following Python file computes the Hilbert series of R/Ihom for small odd
`≥ 3 (see Section 4.2).

from sage.all import GF, PolynomialRing, ideal

K = GF(3329)

for ell in range(3, 30, 2):
R = PolynomialRing(K, ell, 'x', order='degrevlex')
I = ideal([

R.gen(i) * (R.gen(i) + R.gen((i + 1) % ell))
for i in range(0, ell)

])
print(f'{ell:02d}: {I.hilbert_series()}')

A.2 ATRAPOS Implementation (atrapos.mag)

The following Magma file implements the ATRAPOS permutation as specified in
Subsection 3.1.1 and Chapter 6.

// wrapping for 1-based indices
WrapIndex := func<i, n | ((i - 1) mod n) + 1>;
WrapX := func<x, ell | WrapIndex(x, ell)>;
WrapY := func<y | WrapIndex(y, 3)>;

// computes the state S having the same dimensions as `state` such that
// `s_{xy} = f(state, x, y)`
MapState := function(state, f);

return Matrix(
[[f(state, x, y) : x in [1..Ncols(state)]] : y in [1..Nrows(state)]]

);
end function;
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Theta := function(state);
ell := NumberOfColumns(state);
return MapState(

state,
func<state, x, y |

state[y, x]
+ state[WrapY(y + 1), WrapX(x + 1, ell)]
+ state[WrapY(y + 4), WrapX(x + 4, ell)]
+ state[WrapY(y + 5), WrapX(x + 5, ell)]

>);
end function;

Rho := function(state, ry);
ell := NumberOfColumns(state);
return MapState(

state,
func<state, x, y |

state[y, WrapX(x + ry[y], ell)]
>);

end function;

Iota := function(state, c);
return MapState(

state,
func<state, x, y |

(x eq 1 and y eq 1) select state[y, x] + c else state[y, x]
>);

end function;

Gamma := function(state);
return MapState(

state,
func<state, x, y |

(y eq 1) select state[y, x] + state[2, x] * state[3, x] else state[y, x]
>);

end function;

// a single round of Atrapos with column shifts ry and round constant c
Atrapos := func<state, ry, c | Gamma(Iota(Rho(Theta(state), ry), c))>;

A.3 Experiments (experiments.mag)

The following Magma file performs the experiments described in Chapter 6.

SetVerbose("Groebner", 0);
SetVerbose("FGLM", 0);
SetNthreads(1);

load "./atrapos.mag";

// column shifts
ry := AssociativeArray(Integers());
ry[1] := 0;
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ry[2] := 1;
ry[3] := ry[2] + 1;

// round constants
cj := [1..10];

// Limit the number of rounds (depending on ell) to avoid out-of-memory
// exceptions. The default maximum is 1.
maxRounds := AssociativeArray(Integers());
maxRounds[3] := 5;
maxRounds[5] := 2;

// ground field
K := GF(3329);

// how often to repeat every experiment
repetitions := 5;

ells := [3..13 by 2];

// Run and benchmark a single round of Atrapos. Returns the modified state.
BenchmarkRound := function(state, ell, round, ry, c, R);

ResetMaximumMemoryUsage();
start := Cputime();
state := Atrapos(state, ry, c);
outerPart := RowSequence(state)[1];
stop := Cputime();
maxMem := GetMaximumMemoryUsage();

printf "[ell=%o, R=%o] Computed state : time=%.4o, max_mem=%o\n",
ell, round, (stop - start), maxMem;

ResetMaximumMemoryUsage();
start := Cputime();
I_drl := ideal<R | outerPart>;
GB_drl := GroebnerBasis(I_drl);
stop := Cputime();
maxMem := GetMaximumMemoryUsage();
printf "[ell=%o, R=%o] Computed DRL GB: time=%.4o, max_mem=%o\n",

ell, round, (stop - start), maxMem;

ResetMaximumMemoryUsage();
start := Cputime();
I_lex := ChangeOrder(I_drl, "lex");
GB_lex := GroebnerBasis(I_lex: Al := "FGLM");
stop := Cputime();
maxMem := GetMaximumMemoryUsage();
printf "[ell=%o, R=%o] Computed LEX GB: time=%.4o, max_mem=%o\n",

ell, round, (stop - start), maxMem;

printf "\n";

return state;
end function;
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for ell in ells do
R := PolynomialRing(K, ell, "grevlex");

for repetition in [1..repetitions] do
printf "ell=%o, repetition=%o\n", ell, repetition;

state := Matrix([
[R.i : i in [1..ell]],
[0 : i in [1..ell]],
[0 : i in [1..ell]]

]);

max := IsDefined(maxRounds, ell) select maxRounds[ell] else 1;
for round in [1..max] do

c := cj[round];
state := BenchmarkRound(state, ell, round, ry, c, R);

end for;
end for;

end for;
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