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Abstract

ATRAPOS is a novel (still in development) family of cryptographic round-
based permutations for use in the sponge construction. The ATRAPOS permu-
tations operate natively on elements of F,, (where p > 2 is a prime number).
ATRAPOS is designed to provide an efficient alternative for SHA3 as used in
the post-quantum asymmetric cryptographic algorithms KYBER and DILITHIUM
on platforms where hardware acceleration for multiplication in F,, is available,
where either p = 3329 (for KYBER) or p = 8380417 (for DILITHIUM).

This thesis investigates the security of ATRAPOS against algebraic attacks us-
ing Grobner basis techniques. To this end, we model the ATRAPOS permutations
using sparse systems of polynomials. The complexity of algebraic attacks is de-
termined by a quantity called the “ideal degree” of the ideal generated by these
polynomials. We find that the top homogeneous parts of the polynomials cor-
responding to a single round of ATRAPOS form a so-called “regular sequence” of
quadratic polynomials. This property allows us to compute the ideal degree for
any number of rounds. Ultimately, we estimate that algebraic attacks against
ATRAPOS require 2R field operations in F, (additions and multiplications),
where 2 < w < 3 is the matrix multiplication exponent, £ > 3 is a quantity
that depends on p, and R is the number of rounds. Based on this estimate, we
determine that at least R = 4 (for KYBER) or R = 10 (for DILITHIUM) rounds are
needed to obtain 128 bits of security against algebraic attacks. Findings from
small-scale experiments are consistent with this theorized complexity.
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Chapter 1

Introduction

1.1 Background

The security of many of the classical asymmetric cryptographic algorithms used
today (e.g. RSA and (elliptic curve) Diffie-Hellman) relies on problems which
are believed to be intractable for classical computers, but can be efficiently
solved by quantum computers. For example, recovering an RSA private key
from an RSA public key is as hard as computing the prime factorization of a
large integer [KL20, Section 9.2]. Performing RSA private key operations (such
as decrypting a ciphertext) is therefore at most as hard as prime factorization.
Similarly, the security of the Diffie-Hellman key exchange is based on the as-
sumption that the discrete log problem is hard. While prime factorization and
the discrete log problem are believed to be hard for classical computers, [[Sho94]]
shows that quantum computers could solve these problems efficiently: on a suf-
ficiently large quantum computer, these problems can be solved in time poly-
nomial in log N (when factoring an integer N) or logp (in case of the discrete
log problem on a group of order p).

In light of the threat of quantum computers to classical asymmetric cryp-
tography, researchers have been developing and analyzing cryptographic sys-
tem resistant to attacks by both classical and quantum computers, known as
post-quantum cryptography. In 2016, NIST issued a call for proposals for post-
quantum cryptography for two reasons [Nat16]]. First, while no quantum com-
puter has been built yet that is powerful enough to break practical cryptographic
systems, there has been “noticeable progress in the development of quantum
computers ... that have the potential to scale up to larger systems” [[Nat16][].
Second, the transition from classical cryptography to post-quantum cryptogra-
phy will likely require significant effort and time. Additionally, private informa-
tion that remains sensitive over a long period of time (e.g. medical data or state
secrets) may be susceptible to “harvest now, decrypt later” attacks. In these at-
tacks, information encrypted using keys established with classical asymmetric
cryptography is harvested with the intention to decrypt it at a later time when



large-scale quantum computers have become accessible to the attacker. It is
therefore prudent to develop and standardize post-quantum cryptography long
before large-scale quantum computers are built.

Two of the post-quantum cryptography proposals that ended up being stan-
dardized by the U.S. National Institute of Standards and Technology (NIST) are
the key encapsulation mechanism KYBER [Ava+21]] (standardized as ML-KEM
in FIPS 203 [[Nat24b[]) and the digital signature scheme DILITHIUM [[Duc+21]]
(standardized as ML-DSA in FIPS 204 [[Nat24al]).

For completeness, a key encapsulation mechanism allows a sender to gen-
erate a random secret key, which will be encrypted using the public key of the
receiver (encapsulation). The receiver can decrypt this secret key using their
private key (decapsulation). The secret key can then be used for secure com-
munication using symmetric cryptography. A digital signature scheme allows a
signer to sign a message using their private key. A verifier can then verify the
signature using the public key of the signer.

Internally, KyBER and DILITHIUM use the SHA3 primitives SHA3-256, SHA3-
512, SHAKE-128, and SHAKE-256, all of which are based on the extendable-
output function (XOF) KEccAk [BDPV11b] and standardized by NIST in FIPS
202 [[Nat15]. The primitives are used for several purposes, such as seed expan-
sion and hashing. As shown by the pqm4 framework for benchmarking post-
quantum cryptography on ARM Cortex-M4 CPUs [[Kan+], KYBER and DILITHIUM
spend a significant amount of CPU cycles on the SHA3 primitives. For exam-
ple, during key generation (for both KYBER and DILITHIUM), typically 75% or
more of the total CPU cycles are spent on SHA3. For other operations, the cy-
cles spent on SHA3 range roughly between 60% and 80%. Thus, replacing the
SHAS3 primitives in KYBER and DILITHIUM by a more efficient alternative could
result in a potentially significant speedup of KYBER and DILITHIUM. This insight
prompted the development of ATRAPOS-SPONGE.

1.2 Problem Statement

ATRAPOS-SPONGE [[DMM@25]] is a novel XOF, which is currently still in develop-
ment and has not yet been published. It is designed to be an efficient replace-
ment for SHA3 in KYBER and DILITHIUM on platforms where hardware acceler-
ation for multiplication in F, is available, where either p = 3329 (for KYBER)
or p = 8380417 (for DILITHIUM). Internally, KYBER and DILITHIUM operate on
elements of F,. ATRAPOS-SPONGE accomodates this by natively operating on el-
ements of I, as opposed to the SHA3 primitives, which operates on bits. Like
the SHA3 primitives, ATRAPOS-SPONGE is based on the sponge construction. The
permutation used inside ATRAPOS-SPONGE is called ATRAPOS.

[BDPV11al] shows that sponge constructions are computationally indistin-
guishable from random oracles, assuming that they are instantiated with a ran-
dom permutation. It follows then, that the security of a real-world sponge con-



struction largely depends on the security of the permutation used within the
sponge construction. In [BDPV11al], several structural distinguishers for permu-
tations are listed, which could potentially be used in attacks against sponge con-
structions. In this thesis, we will be interested in a structural distinguisher called
the constrained-input constrained-output (CICO) problem, which is strongly re-
lated to preimage attacks. The goal of this thesis is to analyze the complexity
of solving a specific CICO problem (defined in Section [3.2)).

Since the ATRAPOS permutations are multivariate polynomials (as a function
of the digits of the input state), solving the CICO problem amounts to solving a
system of polynomial equations. We will see that the complexity of solving these
systems is determined by a quantity called the ideal degree. We will show that
the ideal degrees related to ATRAPOS are maximal with respect to the number
of multiplications performed. Moreover, we will show that solving the CICO
problem requires an estimated 2%R field operations in F,, where £ is a fixed
parameter related to the state size ({ = 17 for KYBER and £ = 7 for DILITHIUM)
and R denotes the number of rounds. The complexity of the CICO problem can
therefore be efficiently increased by increasing the number of rounds (up to the
point where exhaustive search is the optimal attack).

1.3 Outline

The thesis is structured as follows. Chapter |2 covers the mathematical and
cryptographic underpinnings of the cryptanalysis of ATRAPOS. Chapter [3|gives
a specification of ATRAPOS-SPONGE, and defines the concrete CICO problem to
be analyzed in this thesis. In Chapter [4] we derive the ideal degree correspond-
ing to a single round of ATRAPOS. Chapter [5]extends these results to multiple
rounds of ATRAPOS and, using these results, we derive a minimum number of
rounds to achieve 128 bits of security (with respect to the CICO problem) when
ATRAPOS-SPONGE is used in KYBER and DILITHIUM. In Chapter [6, we compare
the theoretical complexity of the CICO problem to experimental results. Chap-
ter [7| discusses related work. We conclude in Chapter



Chapter 2

Preliminaries

2.1 Linear Algebra

We recall two concepts from linear algebra.

The first concept is the notion of direct sums. Decomposing a vector space
as a direct sum of subspaces may help us understand the vector space through
these subspaces.

Definition 1. Let K be a field, let V be a K-vector space, and let W;, W, C V be
linear subspaces of V. The sum of W; and W, is the set

W1+W2={W]_ +W2|W1 EW],W2€W2}.

We say that V is the direct sum of W; and W,, denoted V = W, @W,, if W;NW, =
{0} and W; + W, = V.

The vector space V is finite dimensional if and only if both W; and W, are.
In this case, dimg V = dimg Wy + dimg W,

The next concept concerns quotient spaces. Intuitively, quotient spaces are
obtained from a vector space by mapping similar vectors to the same element
in the quotient space.

Definition 2. Let K be a field, let V be a K-vector space, and let W C V be
a linear subspace. We define the equivalence relation ~ by v ~ w if and only
if v—w € W. The equivalence class of v (with respect to this equivalence
relation) is the set [v] = {u € V|v ~ u}. We call the set V/W = {[v]|v € V} of
equivalence classes the quotient space of V modulo W. This is again a K-vector
space with the operations a[v] = [av] and [v]+ [w] = [v+w] forall a € K
and v,weV/W.
If V and W are finite-dimensional, then dimg (V/W) = dimg V —dimg W.



2.2 Polynomials

While polynomials are intuitively clear, there are some slight notational incon-
sistencies in the literature. To avoid confusion, we give an explicit definition of
monomials and polynomials.

Definition 3. Given n variables x,...,x,, a monomial in x;,...,x, is any
a a . .
product of the form x*---x,,", where a;,...,a, € Zs, We abbreviate this as
a — n
x%, where a = (a4, ...,a,) €ZL,.

If the number n of variables is small, we sometimes write x, ¥, z, ... instead
of xq,x4,X3,....

Definition 4. Let K be a field. A polynomial in x,..., x, with coefficients in
K is any finite K-linear combination of monomials f = >_ c,x*. The set of all
such polynomials forms a ring, which we denote by K[x,...,Xx,].

We call f univariate if n = 1 and multivariate if n > 1.

Every c,x* in the finite sum above is called a term of f.

There are various ways to define degrees for monomials and polynomials.
The most useful notion to us is that of total degrees.

Definition 5. For a monomial x* the sum 22:1 ay is called the total degree of
x%, denoted by |a].

For a non-zero polynomial f = Y, c,x* € K[x1,...,x,], the total degree
of f (or simply the degree of f) is defined as deg f = max{|a||c, # 0}. We
define the total degree of the zero polynomial to be deg0 = —oo0.

The definition of the total degree allows us to define homogeneous polyno-
mials.

Definition 6. We call a polynomial f =)’ c,x* € K[xy,...,x,] homogeneous
of degree d € Z,, if all monomials x* with c, # 0 have the same total degree
d. We call f inhomogeneous if it is not homogeneous.

Iff =3, cax* €K[xy,...,x,]is an arbitrary polynomial and d > 0, we call
fa= ZI aj=d CaX” the homogeneous part of degree d of f. Using this notation,

we have f = >, fa-
Given a polynomial f € K[xy,...,x,], we define the top homogeneous

part of f as fiop = faegs if f # 0 and fi,p, =0if f =0.

We sometimes use the terms “linear” and “quadratic” to designate polyno-
mials of degrees 1 and 2, respectively.

Example 7. Consider the polynomial ring R = K[x, y,2], and the polynomials
f=xyz+y*+landg=x+y+z.

The polynomial f is an inhomogeneous polynomial of degree 3. Its non-zero
homogeneous parts are fi,, = f3 = xyz + y?z and f, = 1.



The polynomial g is a homogeneous polynomial of degree 1 (i.e. a linear
polynomial). Its single non-zero homogeneous part is given by gy, = g1 =
x+y+z. ¢

Any monomial x* is also a polynomial. In this case, both definitions of the
total degree agree, since degx® = |a|.

In this thesis, we will distinguish between monomials that contain expo-
nents strictly larger than 1 (e.g. x2y or x®yz°) and monomials whose expo-
nents are at most 1 (e.g. xyz or 1).

Definition 8. We say that a monomial x* is square-free if max; a; < 1.

Given a monomial x*, we define sqfree (x*) = X"‘/, where ag = min{a;, 1}
foralll1<i<n.

Given a polynomial ring R = K[ x4, ..., X, ], we define the K-linear subspace
SF € R by SF =spang {x* € R|x* is square-free}.

The notion of square-free monomials can be extended to terms cx* € R
(where ¢ # 0) by defining cx® to be square-free if x* is. Furthermore, we define
sqfree (cx*) = c - sqfree (x*).

A polynomial f = ), c,x* € K[xy,...,x,] can be evaluated at any point
(aj,...,a,) € K" by replacing each x; by a;. Since K is a field, this yields a
well-defined expression. The next definition formalizes this concept.

Definition 9. Let K be a field. Every polynomial f =Y c,x* in K[x,...,x,]
induces a polynomial function K" — K given by

f(al,...,an)=Z:cmai‘1 ceeapt.

a

We stress that the polynomial itself is a formal object. For example, let f; =0
and f, = x2 + x be polynomials in F,[x]. Although f; and f, induce the same
function K" — K, a — 0, they are distinct as polynomials, since the coefficients
of their terms are different.

Next, we introduce the notion of polynomial sequences.

Definition 10. Let K be a field and let R = K[x3,..., Xx,] be a polynomial ring.
Avector f=(fy,...,f;) € R® (withs > 1) is called a polynomial sequence.

For every a = (ay,...,0,) € Zszo’ we define f* = flot1 .- -fsas.

Polynomials and polynomial sequences can be composed to form new poly-
nomials or polynomial sequences.

Definition 11. Let K be a field, let R = K[x,...,x,], and let f=(f3,...,f,) €
R". For a polynomial g =Y c,x* € R we define the composition g o f to be

gszg(f)ZZCafﬂER.

10



Given g =(g1,...,&;) € R’, we define
gof=(giof,...,g,0f)eR’.
For all i > 0, the i-th iteration of f is defined as the composition

f)=fo...of.
~——

i times

We write f j(i) for the j-th component of f0).

2.3 Varieties and Ideals

In this thesis, we will be interested in the systems of polynomial equations that
correspond to ATRAPOS (defined in Chapter [3). This section and the following
sections discuss techniques to solve polynomial systems.

In general, a polynomial system has the following form.

Definition 12. Let K be a field and K[x;, ..., Xx,] a polynomial ring. A polyno-
mial system is a system of equations

f]_(xl,...,xn) = O

folxy, .. x,) =0
‘ 2.1

fi(x1,...,x,)=0
where fi,..., f; are polynomials in K[x,...,X,].

We call K" = {(ay,...,a,) | a;,...,a, € K} the affine space over K. A point
(aq,...,a,) in this space is called a solution of the polynomial system if
fi(ay,...,a,)=0forall 1 <i<s. The set of all solutions is often referred to as
the affine variety, as formalized in the following definition.

Definition 13. Let K be a field and let f4,..., f, € K[xy,..., X, ] be polynomials.
We call the set

V(fi,.-.,f)={(ay,...,a,) €K"| fi(as,...,a,) =0forall 1 <i<s}
the affine variety of f;,..., f;.

In general, a polynomial system may have zero solutions, finitely many so-
lutions, or infinitely many solutions. For example, the system f; = y —x in
R[x, y] has infinitely many solutions of the form (a,a) € R?, while the system
f1 =1 has no solutions.

The following example demonstrates that the number of solutions may de-
pend on the field over which the polynomials are defined.

11



Example 14. Consider the system in the variables x, y,z defined by

x>—y=0

(2.2)
22—2=0

If K = R, the affine variety V(x2 —y,2%— 2) consists of the two parabola
{(x,x%,v2) e R® | x € R} and {(x,x%,—v2) € R®| x €R}. In this case, the
system has infinitely many solutions.

If K = Q, however, system has no solutions, since there existsnoz € Q
such that 22 = v2.

Finally, if K = IF,, it can be seen that

V(x®~y,2~2) ={(0,0,0),(1,1,0)},
showing that the polynomial system has finitely many solutions. ¢

Our next topic of study is that of ideals. As it will turn out, there is a close
relation between affine varieties and ideals.

Definition 15. Let K be a field and let Z be a subset of R = K[x1,...,x,]. We
say that 7 is an ideal if the following properties hold:

1. 0.
2. If f,geZ,then f +ge.
3. IffeZandhe R, then hf €.
We call Z € R a proper ideal of R if Z # R.

Remark 16. It follows directly from Definition[15|that an ideal Z € R is proper
ifand only if 1 ¢ 7.

Trivial examples of ideals in R = K[x1,...,X,] are the zero ideal Z = {0}
and the polynomial ring R itself. The latter is not a proper ideal of R.

As another example, let f be an arbitrary polynomial in R = K[xq,...,x,]
and consider the set Z = {hf | h € R}. It is readily verified that this is an ideal,
which we denote by Z = (f). This construction can be extended to multiple
polynomials as follows.

Lemma 17. Let K be afield and let f, ..., f, be polynomials in R = K[xq,...,X,].
The set

<f1’""fs> = {thfk |h1,...,hs ER}
k=1

is an ideal.

Proofs of Lemma [17| can be found in many introductory algebra books, see
e.g. [CLO15, §1.4, Lemma 3]. Nevertheless, we include a proof here to famil-
iarize the reader with the basic manipulations of ideals.

12



Proof of Lemma[17] We verify that (fy,...,f;) satisfies the properties listed in
Definition [15] By setting h; = --- = h; = 0, we see that 0 € (fy,..., f;). Next,
suppose that f,g € (f1,..., f;). Then there exist hy,...,h; and h’,...,h, all in
R, such that f = >, _ hify and g = >, _, Iy fi. It follows that

f+eg= thfk+zhkfk—2(hk+hk)fk (fi,- s fo)-

Finally, suppose that f = > _ hfx € (f1,....f;) and g € R. Then gf =
g o1 hifi = Dney (M) fr € (f1, ..., f;). Since (fi, ..., f,) satisfies properties
[1}{3] of Definition[15] it is an ideal. O

The set (fy,...,f;) is often called the ideal generated by f,..., f;. Alter-
natively, we say that f;,..., f; is a basis of (f},..., f;).

It is often possible to study an ideal by considering a basis that generates
it. This is similar to how vector space bases in linear algebra often characterize
vector spaces. Unlike the bases encountered in linear algebra, we do not require
the elements of an ideal basis to be independent in some sense. Moreover,
different ideal bases may have different cardinalities. This is illustrated by the
next example.

Example 18. Let f; = x> —y, f, = x>+ y, and f; = y be polynomials in
K[x,y] and consider the ideal Z = (f3, f5, f3). It is easily verified that adding
(a multiple of) a generator to another generator does not change the resulting
ideal, so Z = (f1 + f3, fo— fs, f3) = (x x ,y> We now see that one of the

3

generators, x°, is a multiple of another, x2. Thus, 7T = (xz, y). O

The following lemma is a first step in understanding the relation between
the affine variety V(fy,...,f;) of fi,...,f; and the ideal (f},..., f;) generated
by these polynomials.

Lemma 19. Let K be a field and let f,,..., f, be polynomials in K[xq,...,Xx,].
Then (ay,...,a,) € V(f1,...,f;) if and only if f(ay,...,a,) = 0 for all f €
(froee s fo)-

Proof Let(ay,...,a,) €V(f,....f;). Any f € (f1,...,f;) isof the form >, _, Ay fy,
SO

f(al,...,an)=th(al,...,an)-fk(al,...,an)=O
k=1

Conversely, suppose that f(a;,...,a,) = 0 for all f € (f,...,f;). Then
fiseees fs €4{f1,..., f;) implies (ay,...,a,) € V(fi,..., fs)- O

In Example we saw that f; = x> —y,f, = x2+ y,f3 = y and g; =
x2,g, = y are two sets of polynomials that generate the same ideal. A simple
computation shows that the affine varieties of these sets are the same as well,
since both varieties are equal to {(0,0)} € K?. An immediate consequence of
Lemma [19]is that this principle holds in general.

13



Lemma 20. Let K be a field and let f,...,f, and gq,...,g; be polynomials in
K(x1,...sxp) If f1,...,fyand g4, ..., g, generate the same ideal, i.e. (fi,...,f;) =

(g15-+-,8¢), then V(f1,..., f) =V(g1,---,8¢)
Proof. LetZ = {f1,...,fs) =(g1,...,&:). Then
(ay,.--,a,)€V(f1,...,f;)=f(ay,...,a,)=0forall f €T
=(ag,...,a,) € V(g5 8)

O

Lemma shows that, given a variety V(fi,...,f;), we may replace the
polynomial system f;(x1,...,x,) == f,(xq,...,Xx,) = 0 by another (possibly
easier to solve) system g;(xy,...,Xx,) == g,(x1,...,x,) =0, as long as the

polynomials in both systems generate the same ideal. This prompts us to look
for an “optimal” basis gy, ..., g;, i.e. a basis that allows us to easily solve the
polynomial system. As we will see later, Grébner bases are exactly the kinds of
bases we are looking for.

We conclude this section by generalizing affine varieties of finite sets f1, ..., f;
to affine varieties of arbitrary ideals 7.

Definition 21. Let K be a field and let Z be an ideal of the polynomial ring
K[xy,...,x,]). The affine variety of 7 is the set

V(Z)={(ay,...,a,) | f(ay,...,a,)=0forall f €Z}.

IfZ=(f1,...,f;), then Lemma[19|implies V(Z) = V(fy,..., f;).

Remark 22. Although we will not prove it here, the Hilbert Basis Theorem states
that every ideal Z € R = K[x1,...,X,] is finitely generated [[CLO15[]. Con-
sequently, for every ideal Z C R there exist f;,...,f, € R such that V(Z) =
V(f1,--fs)-

The next definition plays a key role in reasoning about the complexity of
solving polynomial systems.

Definition 23. Let K be a field. Given an ideal Z in the polynomial ring R =
K[x4,...,x,], we define the ideal degree of 7 to be the vector space dimension
d; = dimg (R/Z).

We call 7 a zero-dimensional ideal if d; < oo.

An example of a zero-dimensional ideal is Z = (xz, y) C C[x,y], since
C[x,y1/T = {[1],[x]} is finite dimensional over C. The ideal 7 = (y) C
C[x, y] is not zero-dimensional, since C[x,y]/J = {[1] [x], [xz] yen }

The ideal degree of an ideal 7 is related to the size of its affine variety V(Z).

Proposition 24. Let K be a field and T € K[x1,...,x,] an ideal. If T is zero-
dimensional, then the affine variety V(Z) is finite and contains at most dz points.

Conversely, if V(Z) is finite and K is algebraically closed, then T is zero-
dimensional.
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Proof. Follows from [J[CLO15, §5.3, Theorem 6] and [[CLO15, §5.3, Proposi-
tion 7]. O

Proposition explains where zero-dimensional ideals derive their name
from: if 7 is a zero-dimensional ideal, then V(Z) is finite and forms a so called
“zero-dimensional” variety. (See [[CLO15, Chapter 5] for a formal study on as-
signing dimensions to varieties.)

An upper bound for d7 is given by the Bézout bound.

Proposition 25 (Bézout bound, [[KLR24, Theorem 1]). Let K be a field and let
Z={(f1,...,f,) be a zero-dimensional ideal of K[x1,...,x,]. Then,

n
dr <[ [degfi.
k=1

2.4 Algebras over Fields

Generally, rings allow for two operations: addition and multiplication. Certain
rings, such as polynomial rings, have extra structure and allow for scalar multi-
plication by elements of a field K. For example, let f = >  c,x* be a polynomial
in a polynomial ring K[x4,...,x,]. Since every k € K can be interpreted as a
constant polynomial k € K[x1,...,x,], the multiplication kf of f by the scalar
k is well-defined. The following definition generalizes this principle.

Definition 26. Let .4 be a set and K be a field. We call A a K-algebra if A is a
ring which contains K as a subring.

For K-algebras A, B, we call ¢: A — B a homomorphism of K-algebras
(or a K-algebra homomorphism) if it is a ring homomorphism that maps every
k € K to k. We call ¢ a K-algebra isomorphism if it is bijective. We say that ¢
is a K-algebra automorphism if .4 = 8 and ¢ is a K-algebra isomorphism.

If a K-algebra isomorphism ¢: A — B exists, we say that A and B are
isomorphic as K-algebras. We denote this using “A = B as K-algebras”.

Examples of K-algebras are the polynomial ring R = K[xj,...,Xx,] and the
quotient space R/Z, where 7 is an ideal in K[x;,...,x,]. The canonical ho-
momorphism can: R — R/Z which maps f to its equivalence class [f] is an
example of a surjective K-algebra homomorphism.

The next proposition is the K-algebra version of the First Isomorphism The-
orem for groups, rings, etc. (see Figure [2.1)).

Proposition 27 (The First Isomorphism Theorem for K-Algebras). Let ¢: A —
B be a homomorphism of K-algebras. Then A/ Ker ¢ =1Im ¢ as K-algebras.

An explicit isomorphism is given by p: A/Ker¢ — Im ¢, defined by [a] —
¢(a).
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Proof. By [DF04, Chapter 7, Theorem 7], the mapping [a] — ¢ (a) is a well-
defined ring isomorphism. Since it preserves scalar multiplication, it is also a
K-algebra isomorphism. O

A

G, 2 ) /?

-

A/ Ker ¢

Figure 2.1: The First Isomorphism Theorem for K-Algebras. Here, can: R —
R /I denotes the canonical homomorphism mapping f to its equivalence class

[f].

2.5 Monomial Orderings

When computing with polynomials, it is often advantageous to define an order-
ing on its terms. Consider, for example, the process of dividing f = x> +1 €
K[x] by g = x2+ 2 € K[x]. Both polynomials are univariate, so there exist
unique q,r € K[x] such that we can write f = qg + r, where either r = 0 or
degr < degf. The “leading term” x° of f can be canceled by subtracting x - g,
since f —x-g=x°+1 —(x3 + 2x) =—2x+ 1. Note that deg(—2x +1)=1<
degg,sog=xand r =—2x+1.

In this example, we implicitly used the ordering 1 < x < x2 < --- and
ordered the terms of polynomials in descending order. In terms of this ordering,
the polynomial division algorithm systematically cancels the highest order term
until a polynomial r is found such that the greatest term of g does not divide the
greatest term of r. If instead of canceling highest order terms, we try to cancel
arbitrary terms of f, we may not be able to find g and r. This shows that, even
in the univariate case, ordering polynomial terms is of great importance.

This notion of ordering the terms of a polynomial can be generalized to the
multivariate case. We make two remarks about these generalized orderings.
First, note that after collecting terms, a polynomial f € K[xy,...,x,] can be
written as f = Y. c,x% so an ordering x> x4 > ... > x*M on the
monomials of f automatically yields an ordering c,(;)x*) > cyyx*? > -+ >
ca(m)x“(m) on the (non-zero) terms of f. We are therefore only concerned with
monomial orderings.

Second, every monomial x* € K[xy,...,x,] is identified by its n-tuple of
exponents a € 3 ;. Any ordering on ZZ, therefore induces an ordering on the
monomials of K[x4,...,x,] and vice versa.

Not every ordering on ZZ , yields a useful ordering > on the monomials of
K[xy,...,x,]. Afirst desirable property of > is that for every two distinct mono-
mials x* and x? we have either x* > xP or x? > x%, so that every polynomial
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in K[xq,...,x,] can be written in a unique order. A second desirable property
is that x* > x? implies x*x” > xPx”. This ensures that the “leading term” of a
polynomial f changes predictably if we multiply f by another polynomial g.
The requirements above are reformulated by Definition [28] Before present-
ing this definition, we address two points. First, recall that a partial ordering >
on an arbitrary set X is a relation > which satisfies the following properties:

* Reflexivity: for all x € X, x > x.
* Transitivity: for all x,y,z € X, x > y and y > z implies x > z.
* Anti-symmetry: for all x,y € X, x = y and y > x implies x = y.

Second, given a relation > on an arbitrary set X, we define the relation > on X
byx>yifandonlyif x > y orx =y forall x,y € X.

Definition 28. A monomial ordering on K[x;,...,X,] is an ordering > on Z{
such that:

1. The relation > on K[xq,...,x,] induced by > is a total ordering. That
is, > is a partial ordering and for all a,§ € Z%, exactly one of a > f3,

a = f3, and 8 > a holds.
2. Ifa,B,y €zl ywitha> f,thena+y>f +7v.

3. > is a well-ordering. That is, for every non-empty subset S € Z% there
exists a € S such that § > a for all § € ZZ )\ {a}.

n

If > is a monomial ordering on Z ;, we write x* > xP if a > B.

Remark 29. Property [3]in Definition [28]is often necessary to guarantee termi-
nation of algorithms using monomial orderings.

Next, we define two common monomial orderings.

Definition 30 (Lexicographic Ordering). Leta = (a4, ..., a,)and f = (B4,...,B,)
be elements of ZZ ;. The lexicographic ordering on ZZ, is defined by a >, f3
if the leftmost non-zero entry of a — f3 is strictly positive.

Definition 31 (Degree-Reverse-Lexicographic Ordering). Let a = (aq,..., ;)
and § = (f;,...,0,) be elements of ZL,. The degree-reverse-lexicographic
(DRL) ordering on Z3, is defined by a >4 P if dega > deg 8 or dega = deg 8
and the rightmost non-zero entry of a — f is strictly negative.

The following example compares the lexicographic and DRL orderings.

Example 32. Let K be a field and consider the polynomial ring K[x, y,z,w].
For the lexicographic ordering we find:

® X Zlex Y Zlex 2 Zlex W Zlex 1,
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2 3 4
* X >ex Y Plex 2T Zlex W

° X3 >lex x2 >lex X,
¢ Xxw >lex yz)

while for the DRL ordering we find
* X>qn Y >dn 2> W >an 1
© W >0 2 >4q y% >qu X,
o x3 >4y X% >4 X,
* Y2 >4 XW.

o

Remark 33. The DRL ordering may seem somewhat artificial at first, but often
leads to more efficient computations.

Some monomial orderings “preserve degrees” in the following sense.

Definition 34. Let K be a field. We call a monomial ordering > on K[x1,...,X,]

a graded ordering if, for all a, € Z% ;, we have a > 3 whenever |a| > |B].

It follows directly from Definition[31]and Example [32|that the DRL ordering
is a graded ordering, while the lexicographic ordering is not.

Given a monomial ordering, we can finally properly define the notion of
leading monomials and leading terms.

Definition 35. Let K be a field and fix a monomial ordering > on K[x1,...,x,].
Let f = )., c,x* be a non-zero polynomial in K[x,, ..., x,]. The leading mono-
mial of f is the monomial x* such that a is maximal (with respect to >) among
all a’ € Z% ; with ¢, # 0. The leading monomial is denoted by LM (f) = x“.

If LM(f) = x*, we call ¢, x* the leading term of f, denoted by LT(f) =
[ &
Remark 36. Some authors write LM, (f) and LT, (f) for the leading monomial
and leading term of f to emphasize the dependence on the monomial ordering
>. In practice, the monomial ordering is clear from the context, and we choose
to drop the subscript > from the notation.

As we saw in the polynomial division example at the beginning of this sec-
tion, leading terms play an important role in polynomial computations. Like-
wise, the leading terms of all polynomials in an ideal Z € K[x;, ..., x,] play an
important role when trying to understand the ideal.
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Definition 37. Let K be a field and fix a monomial ordering > on the polynomial
ring R = K[xy,...,X,]. For every ideal Z C R, we define LT (Z) to be the set

IT(Z)={LT(f) | f €Z\{0}}.

The leading term ideal of 7 is the ideal (LT (Z)) generated by LT (Z). Elements
of this ideal are finite sums of the form >, h; LT (f;), where hy,...,h, € R

and fy,..., fm € Z\ {0}.

There is a close relation between the quotient space R/Z and the leading
term ideal (LT (Z)).

Lemma 38 ([[CLO15} §5.3, Proposition 4]). Let K be a field and define R =
K[xq,...,x,]. Fix a monomial ordering on ‘R. For every ideal T C K[x1,...,X,],
R/Z is isomorphic as a K-vector space to S = spang {x* € R | x* ¢ (LT (Z))}.

IfZ=(f1,....f;), then LT(f;) € LT(Z) € (LT(Z)) for all 1 < i <. Since
(LT (Z)) is an ideal, it follows that

(LT(f1),...,LT(f)) € (LT(Z)). (2.3)
Perhaps surprisingly, the reverse inclusion does not hold in general.

Example 39. Let K be a field and let > be a monomial ordering on K[x, y ] such
that x > y. Define Z = (f, f5) € K[x, y], where f; = x +y and f, = —x. Then
fitfo=y,50y =LT(f; + f2) € (LT (Z)). However, (LT (f1),LT(f2)) = (x), so
y & (LT (f1), LT (f2))- ¢

2.6 Grobner Bases

Sets for which the inclusion in Equation (2.3)) is in fact an equality are called
Grobner bases.

Definition 40. Let K be a field and fix a monomial ordering > on K[x1,..., X, ].
Let Z C K[xy,...,x,] be an ideal. We say that a subset G = {g;,...,g;} of Z is
a Grobner basis of Z (with respect to >) if (LT (gy),...,LT(g.)) = (LT(Z)).

Note that Definition 40| does not require that G is a basis of Z. It turns out
that this is already encoded by the fact that it is a Grébner basis.

Proposition 41 ([CLO15, §2.5, Corollary 6]). Let K be a field and fix a monomial
ordering > on K[x,...,x,]. Everyideal T € K[x3,...,X,] has a Grébner basis
with respect to >. Moreover, every Grobner basis of Z is a basis of Z.

Grobner bases can be used to solve several problems related to ideals. One of
these problems is the ideal membership problem: given polynomials f, fi,..., f; €
K[x1,...,x,),is f €Z={(f1,...,f;)? This problem can be solved by computing
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a Grobner basis G = {gy,..., g} of Z (with respect to an arbitrary monomial
ordering). The remainder on division of f by G using a generalization of the
usual polynomial division algorithm is zero if and only if f € Z, see e.g. [[CLO15,
Chapter 2].

Another application of Grobner bases is solving polynomial systems. This
will be the topic of the next sections.

Remark 42. We note that various algorithms exist to compute a Grobner basis
of Z=(fy,..., f;) with respect to a monomial ordering >, such as Buchberger’s
algorithm [[CLO15|, §2.7], or the more performant F4 [[Fau99] and F5 [[Fau02]]
algorithms.

Additionally, the basis conversion algorithm presented in [FGLM93]], known
as the FGLM algorithm, converts a Grobner basis for a zero-dimensional ideal
with respect to a monomial ordering >; to a Grébner basis with respect to
another monomial ordering >,.

2.7 Elimination Theory

LetZ = (fy,...,f;) be anideal in K[xy, ..., x,]. By Proposition [41] there exists
a Grobner basis G = {g, ..., g} with respect to any monomial ordering >. We
observed before that V(fy, ..., f;) = V(gy,-. ., g;) (Lemma[20). If G is a Grébner
basis with respect to the lexicographic ordering, we can compute V(g1,...,4;)
using elimination theory.

We start by defining the elimination ideals of an ideal Z € K[xq,...,X,].
Intuitively, these elimination ideals correspond to polynomial systems whose
affine variety is a superset of V(g1,...,2;)-

Definition 43. Let K be a field and let Z € K[x;,...,Xx,] be an ideal. For all
0 <1 <n, theideal Z; € K[x{,1,-..,X,] defined by

Ly =IZNK[xp415--5X,]
is called the [-th elimination ideal of Z.

We leave it as an exercise to the reader to verify that forall 0 <[ < n, 7; is
indeed an ideal.

For Grobner bases with respect to the lexicographic ordering, we can explic-
itly compute a basis of Z;.

Theorem 44 (The Elimination Theorem, [[CLO15, §3.1, Theorem 2]). Let K be
a field, let T be an ideal of K[x1,...,x,]), and let G = {gy,...,g.} be a Grébner
basis of T with respect to the lexicographic ordering. Then, for all 0 < | < n,
G; = GNK[X}41,-..,X,] is a Grobner basis of the [-th elimination ideal Z;.

We now present a crude algorithm to compute V(g,...,g;) given a Grob-
ner basis of Z € K[x4,...,Xx,] with respect to the lexicographic ordering. The

20



algorithm uses the Elimination Theorem to reduce the problem of computing
V(gi,--.,&.) to the problem of univariate root finding.

For simplicity, we assume that the field K is finite.

Observe that the elimination ideals (viewed as ideals of K[x1, ..., x,]) form
the following ascending chain:

wZIn gz-n_]_ E e gIOZZ.
Their affine varieties therefore form a descending chain:
K'=V(Z,)2V(Z,1) 2 2V(Zy) = V(D).

We know that V(Z,)) = K" and compute V(Z,_;),...,V(Zy) inductively.

Having computed V(Z;) for some 0 < | < n, we observe that G;_; = G N
K[xj,...,x,]is abasis of V(Z;_;) consisting of polynomials in K[ x, ..., x,]. For
every (aj4q,--.,a,) € V(Z;), the substitution (x;,4,...,X,) = (aj41,-..,a,) in
G_, yields a system of univariate polynomials in K[x;]. The affine variety V(Z;)
is then simply the union of the solution sets corresponding to every possible
substitution.

At some point, the algorithm has computed V(Z,) = V(Z). By assumption,

Z={g1,.--,8¢),50 V(gy,...,8:) = V(Zy).

Remark 45. The algorithm presented here can be adapted to the case where K
is infinite as well. Some care should be taken, since the affine varieties are not
guaranteed to be finite.

2.8 Solving Polynomial Systems

The algorithm presented in the previous section provides a method to com-
pute the affine variety V(fy,..., f;) of arbitrary polynomial systems f;,..., f;:
first compute a Grobner basis G = {g1,...,8,} of Z = (fi,..., f;) with respect
to the lexicographic ordering and then use the algorithm above to compute
V(fi,- 5 f)=V(g15---58¢)-

In practice, directly computing a Grobner basis with respect to the lexi-
cographic ordering is computationally expensive (both in time and memory).
Polynomial systems corresponding to cryptographic problems often yield a zero-
dimensional ideal Z € K[x1,..., x,,]. For these ideals it is usually more efficient
to compute a DRL Grobner basis first and then use a basis conversion algorithm
to obtain a lexicographic Grobner basis. State-of-the-art algorithms therefore
use the following approach to compute V(Z) [KLR24]:

1. Compute a Grobner basis of Z with respect to the DRL ordering, using
e.g. the F4 [[Fau99]] or F5 [[Fau02]] algorithm.

2. Convert the DRL Grobner basis to a Grobner basis with respect to the
lexicographic ordering, using a basis conversion algorithm such as the
FGLM algorithm [FGLM93]].
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3. Solve for one or more solutions in V(Z) using univariate polynomial solv-
ing, as described in Section [2.7]

While indirectly computing a lexicographic Grobner basis from a DRL Grob-
ner basis is often more efficient than directly computing a lexicographic Grobner
basis, it should be noted that the indirect computation is still computationally
expensive. This is what ultimately protects cryptographic primitives against al-
gebraic attacks.

In Chapter [6| we will experimentally determine that, for the polynomial sys-
tems corresponding to ATRAPOS, step|[1]is negligible compared to the FGLM step.
We will therefore not discuss the time complexity of this step. (The interested
reader is referred to e.g. [[KLR24] for a discussion on the time complexity of step
[11) Moreover, Remark [47] at the end of this section shows that the asymptotic
time complexity of step [2| dominates the asymptotic time complexity of step
Hence, we will analyze the security of ATRAPOS against algebraic attacks by an-
alyzing the complexity of the FGLM algorithm in step [2| We will also briefly
discuss this choice in Subsection [3.2.11

An upper bound on the time complexity of the FGLM algorithm is given by
the following proposition.

Proposition 46 ([FGLM93| Proposition 5.1]). Let K be a field and let T be a zero-
dimensional ideal of R =K[xq,...,x,]. If T has ideal degree d7 = R /Z, then the
FGLM algorithm has a worst-case time complexity of (’)(nd%‘) ) field operations in K
(i.e. addition and multiplication), where 2 < w < 3 is the matrix multiplication
exponent (see below).

In this thesis, we define the matrix multiplication exponent 2 < w < 3 in
Proposition[46|such that an attacker can multiply two dense n x n matrices using
O(n®) field operations in K. Common choices include w = 3 (naive algorithm),
w = log, 7 ~ 2.81 (Strassen algorithm) [Str69]], w ~ 2.37 [WXXZ24], or w =2
(lower bound) [[KLR24]].

While the algorithm in [WXXZ24]] has a lower asymptotic time complexity
than Strassen multiplication [[Str69]], it is mainly of theoretical interest, since
the hidden multiplicative constant in the O notation is prohibitively large for
practical implementations. In contrast, Strassen multiplication has a hidden
multiplicative constant of 4.7 [Str69]]. Nevertheless, in many cases, the con-
servative choice w = 2 is more reasonable to account for algorithms exploiting
sparsity in the involved matrices [FGHR14; FM11]].

Note that the bound in Proposition 46|is an upper bound for the time com-
plexity of the FGLM step. Since the security of ATRAPOS against algebraic attacks
depends on this step being hard, we would ideally have a lower bound for the
time complexity instead. However, no such practical lower bounds are known.
In many practical realizations of the FGLM algorithm (or variants thereof), the
hidden multiplicative constant in (’)(nd;’) is reasonably close to unity, compared
to d7. It is common to estimate the time complexity of FGLM (with respect to
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field operations) using Cpgry = ndy’ [Alb+19], even when taking «w = 2. This is
not a realistic assumption if the involved matrices are dense, but this estimate
serves as a security margin to account for attacks that exploit sparsity of the
matrices [KLR24]].

The lexicographic Grobner basis obtained by FGLM can be used to find all
solutions in the variety of Z. In cases where finding a single solution suffices, it
may not always be necessary to compute the entire lexicographic Grobner basis.
In these cases, the conservative estimate Cpgry = d7 may be more appropriate.

Remark 47. There exist practical algorithms to perform univariate polynomial
solving (step |3| of the algorithm outlined above) using O(d1'815 ) field opera-
tions, where d < d; [[KLR24]]. This bound is (asymptotically) lower than the
bound for the FGLM algorithm (Proposition[46). It is therefore justified to argue
only about the time complexity of steps(1|and |2} when analyzing the complexity
of the algorithm above.

2.9 Homogeneous Ideals

In this section, we study ideals that are generated by homogeneous polynomials.

Definition 48. Let K be a field. We call an ideal Z of K[xq, ..., Xx,] homoge-
neous if it is generated by a basis of homogeneous polynomials. That is, Z is
homogeneous if and only if there exist homogeneous polynomials f;,..., f, €
K[xy,...,x,] such that Z = (fi,..., f;).

A trivial example of a homogeneous ideal in R = K[x,...,x,] is R itself,
since R = (1).

Another example of a homogeneous ideal is 7 = (x +y, y2> C R. Although
7 is a homogeneous ideal, it contains inhomogeneous polynomials, such as f =
xy2+x+y. In this case, the homogeneous components of f are xy? and x +y,
which both belong to Z.

The next lemma shows that every polynomial in a homogeneous ideal Z can
be written as a sum of homogeneous polynomials in Z.

Lemma 49. Let K be a field and let T € K[x1,...,Xx,] be a homogeneous ideal.
Foreach f € K[xq,...,x,], Z contains f if and only if Z contains all homogeneous
components of f.

Proof. Follows from [[CLO15|, §8.3, Definition 1] and [[CLO15, §8.3, Theorem 2].
O

Before we can fully appreciate the significance of Lemma we have to
make a definition.

Definition 50. Let K be a field and let R = K[xq,...,x,]. For all m > 0, we
define Z,, to be the set of homogeneous polynomials in Z of degree m, together
with the zero vector.
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Every 7, is a linear subspace of R. (For all m > 0, Z,, is not an ideal, unless
Z,=1{0})

Remark 51. In Section[2.7] the notation Z,, was used to denote the m-th elim-
ination ideal of Z. In the remainder of this thesis, Z,, will refer to the vector
space defined in Definition [50|instead. This will also be clear from the context.

To verify that Z,, is a linear subspace of R, let m > 0. The sum of two
polynomials in R, is either zero or has degree m > 0. Likewise, multiplying a
polynomial in R, by a scalar in K results in a polynomial which is either zero or
has degree m > 0. Since every Z,,, contains the zero polynomial, and is closed
under addition and scalar multiplication, it is a linear subspace of R.

It follows from Lemma 49| that 7 = 7, + Z; + ---. Moreover, Z; N Z; = {0}
for all distinct i, j = 0. Thus, Z can be written as the infinite direct sum Z =
@D >0Z,. As a special case, we can write R = @50 R

The decomposition of R and Z into the subspaces Ry, R, ... and Zy,Z4, ...
will help us better understand the relations between Z and R. For example, we

o R/ = (@ Rm)/(@zm) =P Rn/T).

m=>0 m=0 m>0

It now follows that dimy (R,,/Z,) = 2,150 dimg (R, /Z,,). A tool which helps
us understand the right-hand side of this equation is the Hilbert series.

Definition 52. Let K be a field, let R = K[xq,...,Xx,], and let Z be a homoge-
neous ideal of R. The Hilbert series of R /7 is the formal power series

HSp/z(0) = ) dimg (Rpn/Zp) - ™

m=0

From the discussion preceding Definition [52} it is clear that evaluating the
Hilbert series of R/Z at t = 1 yields the ideal degree of Z C R:

HS /7 (1) = ), dimg (R /Zp,) = dimg (R/T) = dr.

m=0

The subspaces Z,,, can be explicitly described if we have a basis fi, ..., f; for
7 consisting of homogeneous polynomials of the same degree.

Lemma 53. Let K be a field and let f,,...,f, € K[x1,...,Xx,] be homogeneous
polynomials of degree d. If T € K[x,...,Xx,] is the ideal generated by fi,..., f;,
then

T, =spang {x°f; |1 <i<sand dega=m—d}

for all m = 0. In particular,

Iy=Ty=-- =131 ={0}.
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Proof. Let S,, = spang {x*f; |1 <i<sand dega =m—d} for all m > 0. By
induction on m, we show that Z,, = S,,, for all m > 0. The base case m = 0 is
trivial, so assume that Z,, = S, for some m > 0.

Since 7 is an ideal, every x*f; with dega = m+ 1 —d is an element of Z of
degree m + 1 and therefore belongs to Z,,, ;. It follows that S,, €7, ..

To prove the reverse inclusion, let f € Z,, ;. If f = 0, it is clear that f €
Sm+1, SO suppose that f # 0. Then, there exist hq,...,h, € K[xq,...,x,] such
that

S

f=2hifi= 20 > () fi =0 > ()i iy
i=1 i=1 j>0 j>0 i=1
where (h;); denotes the j-th degree homogeneous part of h;. For all j = 0,
ijl (h;); f; is either the zero polynomial or a polynomial of degree j +d. We
know that deg f = m+1, so all terms with j+d # m+1 must vanish. Therefore,
f= ijl (hi)py1—q fi- Forall 1 <i <s, (h;),;41—q is @ (possibly empty) sum of
terms with degree (m+1—d), so f = (h;)+1—qfi € Sms1- We conclude that
L1 €S- O

2.10 Regular Sequences

In this section, we review the notion of regular sequences of polynomials. Regu-
lar sequences will play a key role when we extend the results for a single round
of ATRAPOS to multiple rounds of ATRAPOS.

Definition 54. Let K be a field, let R = K[x3,...,x,] be a polynomial ring,
and let Z € R be an ideal. We call [f] € R/Z a non-zero-divisor for R/Z if
[f]-[g]=0inR/Z implies [g] =0 forall [g] € R/T.

We say that the sequence fi,...,f, of polynomial in R is a regular se-
quence if (f;,...,f;) # R and if for all 1 < i < s, [f;] is a non-zero-divisor

for R/ (f1,..-, fi_1)-

Generally, whether the polynomials f;,..., f, € R form a regular sequence
may depend on their order. The next lemma shows that the order is not impor-
tant if the polynomials are homogeneous.

Lemma 55. Let K be a field and let fi,...,f, in R = K[xq,...,X,] be homoge-
neous polynomials of degrees dy, ..., d;. Then fy,..., f; is a regular sequence if and
only if for every permutation o on {1,...,s}, fo1),-- -, fo(s) 1S a regular sequence.

Proof. Follows from [[KRO5, Corollary 5.2.17]. O

The next lemma allows us to determine whether a sequence fi,..., f; of
homogeneous polynomials is a regular sequence, if we know the Hilbert series

of R/ (fr,---sfs)-
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Lemma 56 ([Sta78, Corollary 3.2]). Let K be a field and let f,...,f, in R =
K[xy,...,x,] be homogeneous polynomials of degrees d;,...,d,. Then

where equality holds if and only if fi,...,f, is a regular sequence. (We define
> o Amt™ =2 bt™if ay, > by, for allm > 0.)

Lemma [56|lets us easily compute the ideal degree of an ideal generated by
a regular sequence of homogeneous polynomials.

Corollary 57. Let K be a field and let fi,...,f, be a regular sequence in R =
K[xy,...,Xx,] of homogeneous polynomials of degrees d;,...,d,. Then the ideal
Z={f1,...,fs) has ideal degree d - - - d,.

Proof. By Lemma the Hilbert series of R/Z is HSy 7 (t) = IT: 1% Rec-

i=1 1—¢
1—tdi . di—1 j )
—— equals the geometric sum ), jmo /> we find

that 7 has ideal degree HSp 7 (1) =[]}, (Zji:_ol 1) =d,---d,. O

ognizing that, forall1 <i <s,

The following corollary shows how Lemma implies that the variables
X1, Xy €K[Xq,...,Xx,] form a regular sequence. It is not hard to derive the
same result using Definition |54| directly, and we leave it as an exercise for the
reader to do so.

Corollary 58. Let K be a field. The variables x1,...,x, € R = K[xq,...,Xx,]
form a regular sequence.

Proof. Let Z = (xy,...,X,). For all m > 1 we have Z,, = R,,, while Z, = {0}.
It follows that HS 7 (t) = 1. Since % is also equal to 1, Lemma implies
that x4,...,x, form a regular sequence. O
Remark 59. The regular sequence Xxg,...,x, from Corollary is the sim-
plest kind of regular sequence one can have, in the sense that the degrees
of the polynomials are minimal. To see this, let fi,...,f, be polynomials in
R =K[xy,...,x,] and suppose that one of the polynomials, say f;, has degree
< 0. If f; = 0, then [fj] is not a non-zero-divisor for (fl, . ..,fj_1>. On the
other hand, if f; = k € K \ {0}, then k_lfj =1, so (fi,...,f;) = (1) is not a
proper ideal. Therefore, if f;,..., f; forms a regular sequence in R, we must
have degf; > 1forall1<i<s.

The following result shows that a regular sequence remains regular if we
extend its base polynomial ring by new variables y;,..., Y.

Lemma 60. Let K be a field and suppose that f1,..., f, is a regular sequence in
R = K[xq,...,x,]. Then fi,...,f; is also a regular sequence in the extended
polynomial ring S = K[X1,.-+,Xp, Y1s++ > Yml)-
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Proof. We make two observations. First, we can interpretSasS = R[Y1,..-, Yml-
Second, if (gi,...,4;) is an ideal in R, its generators are elements of S as
well. We can interpret the ideal in S having generators gi,...,&; € S as
(815> 8 [¥15+- s Ym]-

We want to show that for all 1 < i <s, [f;] is a non-zero-divisor for the
quotient space R[Y1,...,Yml/ (f1s-->fic1) (V15> Ym])- Fix 1 < i <s and let
Z={(f1,...,fi_1) € R. By repeated application of [DF04, Chapter 9, Proposi-
tion 2], there exists a ring isomorphism

R[yli'")ym]/I[.yla"')ym]_)(R/I)[ylz"'hyi—l]

defined by [ Y, c.y*] = D [caly*. (The c, are polynomials in R.) Now,
suppose that [uf;]1=0in R[y1,..., Yml/Z[¥1,--., Ym] forsomeu=> c,y* €
RI¥1,--->Ym]- (Again, the c, are polynomials in R.) Then [Za (cafl-)y“] =0
in R[y1,--o5 Yml/ZLY15--->Ym] and by the isomorphism above, we have that
> lcafi1y* = 0. It follows that all [c,f;] are zero in R/Z. But [f;] is a non-
zero-divisor for R/Z, so the [c,] are all zero in R/Z. By the isomorphism,
it follows that [u] = [Za cay“] =0in R[y1,--»Yml/Z[Y1,--->Ym], and we
conclude that [f;] is a non-zero-divisor for R[y1,-.., Yml/Z[V1>-->Yml- O

In this thesis, we’re mainly interested in regular sequences because we can
easily characterize their syzygies, as defined next.

Definition 61. Let K be a field and let f4,..., f, and uq,...,u, be polynomials
in K[xy,...,x,]. Wecall (uy,...,u) a syzygy of (f1,...,f;) if Dy, urfx =0.

As an example, let f; = x2,f, = xy € K[x,y]. Then yf; —xf, = 0, so
(y,—x) is a syzygy of (f1, f2)-

More generally, let f1,..., f; be arbitrary polynomials in K[x4,...,x,] and
let e, ...,e, € R® denote the standard basis vectors of R®. (That is, e; equals
1 in its i-th component and zero elsewhere.) For all 1 < i < j < s we have
fifi— fifj = 0, which means that f;e; — f;e; is a syzygy of (fi,..., f;). A syzygy
of this form is called a trivial syzygy.

The next lemma shows that all syzygies of a regular sequence are generated
by trivial ones.

Lemma 62. Let K be a field and let fi,...,f, in K[xq,...,X,] be a regular se-
quence. If (uq,...,u) is a syzygy of (fi,...,f;), then there exist polynomials
vij eRwithl<i< ] < s such that (ul, . .,lls) = ZlSi<jSS vij (fjel' —fle])

Proof. Follows from [Eis95, Corollary 17.5]. O
The following result is sometimes easier to work with, since it describes the
polynomials u;, ..., u, of the syzygy individually.

Corollary 63. Let K be a field and let f,,...,f, in K[xy,...,X,] be a regular
sequence. If (uy,...,u) is a syzygy of (f1,...,f;), then there exist polynomials
wi; € R with 1 < i,j < s such that u; = Zj.:l w;ifj forall 1 <i <s. These
polynomials satisfy w;; = —wj; and wy; =0 forall 1 <1, j <s.
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Proof. Define
Vij ifi<j<s,
wi; =140 ifi=1j,
ifl<j<i.

Considering the k-th components of both sides of the equality (uy,...,u;) =
leiqg Vij (fjei —fiej) from Lemma we find that, for all 1 < k <'s, we

S
have wy = X i Viifj — 2ir<ick Viefi = 20521 Wi - N

2.11 Security Level

Designers of cryptographic primitives usually claim that the primitive has a se-
curity level of e.g. 128 or 256 bits against certain attacks. For the attacks
considered in this thesis, the following notion of security level suffices.

Definition 64. Suppose that an attack against a cryptographic primitive has
complexity C and success probability p. We define the security level A, mea-
sured in bits, of the cryptographic primitive against this attack as A =log, (%)

The unit of complexity depends on the context. For a hash function H (Sec-
tion[2.12)), C usually denotes the number of evaluations of H. For the algebraic
attack discussed in this thesis, C will denote the number of field operations in
F, (addition and multiplication).

Example 65. In later chapters, we estimate the complexity of an algebraic at-
tack against ATRAPOS-SPONGE to be C = 2%R field operations in F,, where R is
the number of rounds of the ATRAPOS permutation and ¢ is a parameter that
depends on p. The success probability of such an attack is P = 1. Assuming that
this is the best possible attack, we say that ATRAPOS-SPONGE has a security level
of A = log, (ﬁ) = 2[R bits (with respect to field operations in F,) against
algebraic attacks. We will use this in Section to derive the minimal num-
ber of rounds needed to obtain at least 128 bits of security against algebraic
attacks. O

2.12 Hash Functions

Recall that a hash function can be defined as a function H : F* — F¢ which takes
an input x € F; of arbitrary length and maps it to an output H (x) of length £.
A common value for p is p = 2, in which case H operates on bits.

Three desirable security properties of a cryptographic hash function include:

1. Preimage resistance: given a random output y € H (]F;), it should be
computationally infeasible to find an x € IF; such that H(x) = y.
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2. Second-preimage resistance: given a random x € IF;, it should be com-
putationally infeasible to find x’ € IE‘; \ {x} such that H (x' ) = H(x).

3. Collision resistance: it should be computationally infeasible to find two
distinct x,x’ € F, with H(x’) = H(x).

Note that the security properties are listed in increasing order of strength;
collision resistance implies second-preimage resistance, which, in turn, implies
preimage resistance (assuming that the definition of “infeasible” is kept fixed).

We can derive upper bounds for the security level of a hash function H
with respect to preimage resistance, second-preimage resistance, and collision
resistance by considering random oracles. For a random oracle, the probability
of finding a preimage x corresponding to some given y € IFf) after C < p queries
is P~ C/p’. For any 1 < C < p!, we find that C/p ~ p’. Thus, A ~ log, p* =
?log, p gives an upper bound on the security level in bits of H against preimage
attacks. The same upper bound holds for second-preimage attacks.

Due to the birthday problem, the probability of finding a collision after C
queries gets close to 1 if C approaches 4/pl = p!/2. It follows that the se-
curity level in bits of H against collision attacks is bounded from above by
A~ log, pt/? = £/2-log, p.

For a secure hash function, the actual security level should be as close to
these derived upper bounds as possible.

Remark 66. The bounds derived here assume that the adversary uses classical
computers. In the presence of quantum computers, the security level against
preimage and second preimage attacks is bounded from above by ~ £/2-log, p,
while the security level against collision attacks is bounded from above by ~
£/3-log, p. See e.g. [KL20, §14.1] for a discussion.

2.13 The Sponge Construction

Extendable-output functions (XOFs) extend the notion of hash functions by al-
lowing for arbitrary length outputs. That is, a XOF is a function H: F* xN — ]F:;,
which maps pair (M, £), consisting of a message M of arbitrary length and a re-
quested output length £, to an output of length £. The usual security notions
of preimage resistance, second-preimage resistance, and collision resistance for
hash functions carry over to XOFs. The corresponding security levels, however,
are different.

A practical method to build extendable-output functions is using the sponge
construction (Figure [BDPV1la]. The sponge construction operates on a
state in IFZ. The state is partitioned into a c-digit inner part and an r-digit outer
part [BDPV11a], so that r + ¢ = b. We refer to r and c as the rate and capacity,
respectively. The state is initially zero.

!Thanks to Bart Mennink for providing the TikZ code for this figure.
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Figure 2.2: The sponge constructionﬂ

After injectively padding and cutting the input message M into r-digit blocks,
the sponge construction proceeds in two phases. During the absorbing phase,
the first block of r-digit from the padded message is added (entrywise) to the
outer part of the state. The state is then mapped to a new state by a permu-
tation P: F? — FP. This process repeats until all r-digit blocks are consumed.
The squeezing phase follows the absorbing phase. During this phase, r-digit
blocks from the outer part of the state are returned by calling P as often as
required. Finally, the r-digit output blocks are combined and truncated to the
first £ digits.

As shown in [[BDPV11a[], sponge constructions are computationally indis-
tinguishable from random oracles, assuming generic attacks. We call an attack
generic if only exploits general properties of sponge constructions, but not of
the specific permutation used within the sponge construction. In this setting,
the sponge construction, where the output is truncated to ¢ digits, has a classical
security level of ~ min(c/2,n) - log, p bits against (second) preimage attacks
and a classical security level of ~ min(c/2,n/2) - log, p bits against collision
attacks.

Of course, practical implementations of sponge constructions are trivially
distinguishable from random oracles, since the permutation P used in the sponge
construction has a compact description (which we assume is known publically).

However, the mere fact that the permutation P has a trivial distinguisher,
due to its compact description, provides no practical benefits in an attack. In
[BDPV11al], examples of structural (non-trivial) distinguishers for P are listed,
whose existence may be of practical use in attacks. Well-known structural dis-
tinguishers are differential and linear cryptanalysis. In this thesis, however,
we will be interested in a structural distinguisher called the constrained-input
constrained-output (CICO) problem. This is not a single problem, but rather a
family of problems.

Definition 67 (CICO problem). Let P: ]Fg - ]FS be a permutation. Every CICO
problem has the following form: given a set of possible inputs, X € ]FS, and a
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set of possible outputs, Y C F?, find a pair (x,y) € X x ) such that y = P(x).

The general notion of the CICO problem subsumes the specific notions of
preimage resistance, second-preimage resistance, collision resistance, etc. For
example, consider the preimage resistance property which states that, given
a random output y, it should be computationally infeasible to find an input
X that maps to y. For an r-bit input and an r-bit output, this corresponds
to the following CICO problem (where we ignore padding for the sake of the
argument): given X = IF‘}? and Y = {y}, find a pair (x,y) € X x ) with y =
P(x). Note that we can account for padding by constricting X.

We leave it as an exercise to the reader to formulate other security properties
in terms of CICO problems.
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Chapter 3

ATRAPOS-SPONGE

In this section, we define ATRAPOS-SPONGE, the ATRAPOS permutations, and the
CICO problem for ATRAPOS that we will analyze in this thesis.

3.1 Specification

ATRAPOS-SPONGE is an extendable-output function (XOF) based on the sponge
construction [DMM®25]]. It is designed to be an efficient alternative for SHA3
in KYBER and DILITHIUM on platforms where hardware acceleration for multi-
plication in [, is available, where either p = 3329 (for KYBER) or p = 8380417
(for DILITHIUM). ATRAPOS, the permutation used in ATRAPOS-SPONGE, operates
on states of digits in IF,. The states are represented by two-dimensional arrays
consisting of 3 rows and £ columns:

Qoo Ao " A1
a=|dpy d11 - dQ-11 |>
Qoo QA10 "°° A0

where a, , € F, forall 0 < x < {—1and 0 < y < 2. Equivalently, states
can be interpreted as one-dimensional vectors in IF;Z. Given a one-dimensional

representation a = (ag,...,d3_1) € IF;Z, its two-dimensional representation can
be computed by converting the one-dimensional index i to the two-dimensional
index (i mod £,i mod 3). Since the ATRAPOS permutations are defined using
two-dimensional representations, we will represent states in JFgZ by their two-
dimensional representation from now on.

The ATRAPOS-SPONGE specification is still in development and a number of
parameters have not been fixed yet. For example, the current ATRAPOS-SPONGE
specification allows either the bottom row (the a, o) or the bottom two rows
(the a, o and a, ;) to be used for the outer part in the sponge construction. In
this thesis, we will confine to the case where only the bottom row is used for
the outer part, since it greatly simplifies the analysis. In this case, the rate and
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capacity of ATRAPOS-SPONGE are r = { and ¢ = 2{, respectively. The specifica-
tion prescribes £ = 17 for KYBER and £ = 7 for DILITHIUM in order to achieve
128 bits (with respect to evaluations of the ATRAPOS permutation) of generic
collision resistance in the presence of adversaries having access to a quantum
computer.

3.1.1 The ATRAPOS Permutations

ATRAPOS is a family of permutations. Every ATRAPOS permutation is a com-
position of R round functions. The j-th round function is itself a composition
yotjopo6,wherev,i;,p,0: IE‘ge — ]Ff’f are the following (polynomial) per-
mutations:

0: ax,y < ax,y + ax+1,y+1 + ax+4,y+4 + ax+5,y+5 VX, y
P:ly,y < ax+ry,y Vx,y
j $ Qg <Aoo + Cj

Y: ax,O « ax,O + ax,lax,2 VX

Note that x ranges over {0,...,£ —1} and y ranges over {0,1,2}. (The x-
components of indices above are implicitly taken modulo £ and the y-components
are implicitly taken modulo 3.) Here, ¢; € F, is a round-dependent constant.
The current ATRAPOS specification has not fixed the c; yet, but our analysis of
ATRAPOS will be independent of their specific values.

The 0 < r, < { are row-dependent column shifts. The shift ry is set to 0.
Specific values for r; and r, have not yet been chosen, but it has been deter-
mined that they have to satisfy ry = r; + 1 or ry = r; + 4. These choices of
r; and ry ensure that the ideal degree related to ATRAPOS are maximal, as we
will see in Chapter [4] Again, the specific values of r; and r, do not change our
analysis.

We define ATRAPOS[1] =y ot o p o O to be the first round of the ATRAPOS
permutation. Generally, having defined ATRAPOS[1],...,ATRAPOS[R—1] we
define ATRAPOS[R] =7y otz o p o 6 o ATRAPOS[R — 1] to be the first R rounds of
ATRAPOS.

Remark 68. The ATRAPOS-SPONGE specification only allows { = 17 (for KYBER)
and £ = 7 (for DILITHIUM). However, the ATRAPOS permutations defined in this
section are permutations for all odd £ > 3. We will therefore analyze ATRAPOS-
SPONGE for arbitrary odd £ > 3.

3.2 CICO problem

As discussed in Section|2.13] permutations used in sponge constructions need to
be secure with respect to structural distinguishers. In this section, we motivate
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and define a CICO problem for ATRAPOS by studying a preimage attack. For
simplicity, we only consider a target digest consisting of a single r-digit block.

Consider ATRAPOS-SPONGE with an output length of r digits, as depicted in
Figure Let M’ = pad (M) denote the padded version of M. We can write
this as the concatenation M’ = M, || M, || -- - || M,,, where M4, ..., M, are r-digit
blocks. We study the following problem.

Definition 69 (Relaxed preimage attack). Given an r-digit target digest h, find
r-digit blocks My, ..., M, such that the padded message M’ = M; || M, || - - - || M,,
results in the (truncated) digest h.

TR —
] Y ) Y q 1
e e N e e I S I
| |outer 3 8 3 gl
inner & = = 20
0 =l Jal JE L JE|
¢ < < < < |
L o/ o/ o/ 1

absorbing | squeezing

Figure 3.1: The sponge construction for ATRAPOS, where the output consists of
a single r-digit block.

Note that the adversary may assume that M’ is already a padded message,
i.e. there exists some message M such that M’ = pad (M). This is to the advan-
tage of the adversary, since M’ may not actually be in the image of the padding
function. By showing that the relaxed preimage attack is computationally infea-
sible, we therefore also show that the regular preimage attack, where we need
to find a message M before the padding step, is computationally infeasible.

To formalize this, let M’ = M, ||M,||- - -|| M,, be any padded message. Let a de-
note the state just before the last call to ATRAPOS [R] in Figure (after the en-
trywise addition of M, to the outer part of the state) and let a’ = ATRAPOS [R](a)
denote the state after the last call to ATRAPOS [R]. We suggestively write

Qoo QA1 " Ap12
a=|\14dp1 di1 " A1
X; Xy e x;
and
a(/),z ag,z e a2—1,2
a' = a6,1 ag,l a2—1,1 )
i Y2 Y
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to indicate that an adversary can easily set the bottom row of a as desired, and
to indicate that the bottom row of a’ corresponds to the output digest h.

Solving the relaxed preimage attack now corresponds to finding a;,a,,x €
Ff; such that the state a = (a;,a,,x)" is mapped to the state a’ = (a’l,a’z,y)T,
where a},a;,y € IFf) and y is the target digest. This motivates the following
CICO problem.

Definition 70 (CICO problem for ATRAPOS-SPONGE). Given a;,a,,y € ]Fﬁ , find
X E IFf; such that there exist a},a; € ]Ff; with

ATRAPOS [R](ay,a;,%x) = (alz, a’l,y) .

Note that in this CICO problem, a; and a, are fixed. We will see that the
CICO problem in Definition [70|is computationally infeasible (for R sufficiently
large) for all choices of a; and a,. Consequently, the relaxed preimage attack
in Definition 69|is also computationally infeasible (for R sufficiently large).

3.2.1 Polynomial Modeling

In the CICO problem in Definition aj,a, € ]Ff) are fixed, while x € IE‘f) isa
variable. Thus, we may consider xq,..., X, to be variables in a polynomial ring
R =TFp[xy,...,x,]. We can then take a, ; and a, , to be constants in this ring.
From this point of view, ATRAPOS is a mapping

/ / /
Qoo Q1o *°° Qg1 Qoo Ty 0 Qg9

/ / /
o1 A1 0 Gg-11 [ | Qo1 A7 7 Qg
Xy Xoo v Xy & & - 8¢

Since the round function of ATRAPOS is a composition of polynomials, ATRAPOS
itself is a polynomial mapping. Therefore, g;, a;,l, and a;,z are polynomials in
R. The CICO problem in Definition [70| is equivalent to finding a solution for
the polynomial system
gl(xlﬁ""xlf) =N
gZ(Xlz .. .,Xe) =X2
3.1

gﬂ(xlz"-zxﬂ):yf

Recall from Section that state-of-the-art algorithms for solving poly-
nomial systems consist of three steps (DRL Grobner basis computation using
F4/F5, lexicographic Grobner basis computation using FGLM, univariate poly-
nomial solving), where the running time is dominated by the first two steps
(Remark [47). The experimental results in Chapter [6] show that, for small sys-
tems, the first step (DRL Grobner basis computation) is negligible compared to
the second step (lexicographic Grobner basis computation using FGLM). In this
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thesis, we will formally show that the second step (lexicographic Grébner basis
computation using FGLM) is computationally infeasible. Thus, even if an ad-
versary is able to perform the other two steps efficiently, the overall three-step
algorithm is still infeasible due to the second step.

In line with the discussion in Section we estimate the complexity of
the FGLM step by Cpgy = df, where we conservatively set w = 2 to account
for attacks that exploit sparsity of the polynomial system in Equation (3.I). In
Chapter [4| and Chapter [5|we will show that, for all odd ¢ > 3 and for allR > 1,
the ideal corresponding to Equation has ideal degree 2%, It then follows
that the complexity of the FGLM step for an R-round ATRAPOS permutation is
given by Cpgy = 2%R.
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Chapter 4

Single-Round Analysis

In this chapter, we determine the complexity of solving the CICO problem in
Definition [70| for a single round of ATRAPOS. For simplicity, we restrict to the
case where £ > 3 is an odd number not divisible by 3, which is the relevant case
for KYBER (¢ = 17) and DILITHIUM (£ = 7).

In Section 4.1 we will work out a polynomial system F;,,, which corre-
sponds to a single round of ATRAPOS whenever £ > 3 is not divisible by 3. From
Finn We obtain a system JFy,,,, consisting of homogeneous polynomials, whose
ideal Zj, o, = (Fhom) has the same ideal degree as Z;;, = (Fiun), but is easier to
work with. In Section we consider the Hilbert series of F,,[x1,...,X¢]/Zhom
and make a claim (the “Direct Sum Claim”), which is equivalent to this Hilbert
series being equal to anzo (i) - t™. In Section and Section Hwe give a
proof sketch and a formal proof, respectively, for this claim. As a by-product,
we learn that 7, ., is generated by a regular sequence of polynomials.

Throughout this chapter, p > 3 will denote a prime, { > 3 an odd number
denoting the width of the two-dimensional ATRAPOS state, and R will denote
the polynomial ring F,[x1, ..., x].

4.1 Polynomial System

Let
o2 Q12 **° Qg2 Qo2 Q12 **° AQp-12
a=|dpy A1 v X171 |=| 9,1 d11 " dQ-1,1
doo 410 **° Ap-1,0 Xy Xpoo o X¢

be the input state and let

/ / . / / / e /
P a},z a§—1,2 Qoo Ay Ay_1
/ — / DY — / / oo e /
a=\|4a,; ay, Q1 |=| %1 1 Q11
/ / /
Qo 910 77 Yoo &1 & " &

be the output state after a single round of ATRAPOS, say the j-th round. As
noted in Section every element of a’ can be viewed as a polynomial in
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the polynomial ring R = F,[x,...,x;]. The complexity of solving the CICO
problem in Definition[70|is given by dimy (R/Z), where Z is the ideal generated
by g1,-.., 8. We explicitly compute expressions for gi,..., g, and use these to
determine dimg (R/Z).

We introduce the variables a; = 6(a), a, = p(a;), a3 = t(a,) for the in-
termediate states. (Hence, a’ = y(a3).) After applying 6 to a, the value of the
state at (x, y) is given by

(al )x,y =dy,y + Aye+1,y+1 + Ay +4,y+4 + Ax+5,y+5

forall0 < x <{—1and 0 < y < 2. (Recall that the x-components of the indices
are taken modulo ¢, while the y-components are taken modulo 3.) Applying p
to a;, we have

(a2)x,y = (p(al))x+ry’_y
= ax+ry,y + ax+1+ry,y+1 + ax+4+ry,y+4 + ax+5+ry,y+5

forall0 <x <{—1and 0 <y < 2. After the ¢ step, we have

(a3)x,2 (l’(a2))x,2 Aytry2 T Ayt 14150 T Axtatry,0 T At 54r,y,1
(aS)x,1 = (L(az))x,l = Aytr; 1 F Q14,2 T Axtar 2 T Qg5 0
(aS)x,O (l’(aZ))x,O ax+r0 0 + ax+1+r0,1 + ax+4+r0,1 + ax+5+r0 2t C

for all 0 < x < £ —1. Finally, after applying y to a3, we find that for all 0 < x <
-1,
a;,o = (aB)x,O + (as)x,1 (ag)x,z

= ax+5+r1,0 (ax+1+r2,0 + ax+4+r2,0) + €x+1(x):
where €;(x), ..., €,(x) are polynomials in R of degree < 2.
Write n for the unique integer m € {1,...,£} such that n —m € £Z. Then,
for all i € Z we have a;_; ; = x;. It follows that
= a0 = Xizse, (X, + Xirarn,) +€)
&i = 4j_10= XiF5+r, \Xititr, + Yitdrr, €iX
foralll1 <i<{(.
In the ATRAPOS specification (Section [3.1), we saw that either ry = r; + 1
orry=r1+4. Ifry =r; +1, then

_ .2
8i = Xig T X, Xiwaen, T i(x)

and if ry =y + 4, we have

2

8i = Xig T X5, Xivsen, T i(%).

Without loss of generality, we can relabel the x; using i — i — 5 to obtain equa-

tions of the form
— 2 .
&i = xi+r1 + Xirr X3+,

+€;(x)
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and

_ 2
8i =X - + X Xoae, €;(x),
respectively.
As long as ged (¢,3) = 1, we can relabel x,...,x, and g;,...,g, in such a
way that

g1 = Xf +X1XZ+€1

g9 = Xg +X2X3 +€2

8y :X£2+X1Xe +6€

Since 3 is prime, the condition ged (£, 3) = 1 is equivalent to £ not being divisible
by 3. This condition is certainly satisfied when £ = 17 (for KyBER) or £ = 7 (for
DILITHIUM).

Remark 71. To delimit the scope of this thesis, we will not analyze the ideals
corresponding to the ATRAPOS permutations when £ is divisible by 3.

If £ > 3 is odd and not divisible by 3, solving the CICO problem in Def-
inition [70| for a single round of ATRAPOS amounts to solving the polynomial
system

81=01
82=DY2
8t=Wt
Since y;,..., Y, are constants in F[xq,...,x,], we may absorb them in the ¢;.

Thus, without loss of generality, solving the CICO problem for a single round of
ATRAPOS (where, again, £ > 3 is not divisible by 3) is equivalent to solving the
polynomial system

g1=f1+e1=0

& =frt+€ey=0
“4.1)

& =fite =0
where

2
fi=x; +xixgg €Flxq,...,x,]

contains the terms of g; of degree 2 and ¢; € F[xy,...,Xx,] contains the lower
degree terms.
We call Fip, = (g1,...,8¢) € R' the inhomogeneous system and refer to
Zinh = (Finn) € R as the ideal corresponding to the inhomogeneous system.
The notation €; for the lower degree terms in Equation is suggestive:
as we will see in Chapter [5] these terms do not contribute to the ideal degree.
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It therefore makes sense to study a simplified version of the system in Equa-
tion (4.1) where the €; are removed:

f1:X%+x1X2:O

f22x5+xZX3:O

fe:XZZ'i'X[Xl =0

We will refer to Fyom = (f1,--.,f;) € RY as the homogeneous system corre-
sponding to Fi,y,. The ideal Zy o = (From) € R is the ideal corresponding the
homogeneous system. For the sake of brevity, in this section we will often drop
the subscript and write Z instead of 7y,

The Bézout bound shows that the ideal degree d; = dimy (R/Z) is at most
]_[izl deg f; = 2¢. Since the hardness of the CICO problem relies on the ideal
degree being large, the optimal case is when dz = 2¢. In the remainder of this
chapter, we will see that dy is indeed equal to 2¢.

Remark 72. The ideal Z = (Fy,,) is well-defined even if ¢ is divisible by 3.
Although in these cases, 7 does not correspond to an ideal induced by ATRAPOS,
it is still useful to study them. For example, the Hilbert series of R /Z for { =3
and £ =9 (see Tablein the next section), will help us understand the Hilbert
series for arbitrary /.

We will therefore study 7 for all odd £ > 3. At the end of Chapter|[5], we will
again restrict to the cases where £ is not a multiple of 3.

For even £, the ideal Z does not have ideal degree 2¢ anymore. We will not
discuss this case, since ATRAPOS is not a permutation for even /.

4.2 Direct Sum Claim

For small odd ¢, the ideal degree d; can be computed directly by evaluating the
Hilbert series HSg 7 (t) at t =1 (see Section. Table illustrates this for
small odd values of £ > 3. The code can be found in Section[A. 1]

14 | Hilbert series HSg 7 (t) | dr
3| 3+3t2+3t+1 28
5| t24+5t*+10t3 +10t2 + 5t + 1 25
7| t7+7t0+21t° +35¢4 + 353 + 212+ 7t + 1 27
9 | t?+9t8 +36t7 +84t° +126t° + 126t* + 84t> +36t2+ 9t +1 | 2°

Table 4.1: Hilbert series of R /Z and ideal degree d for small values of .

It may not be immediately obvious, but the coefficients of the Hilbert se-
ries listed in Table are binomial coefficients. More precisely, it seems that

40



dimp (R,,,/Z) = (fl), where R, and Z,,, denote the m-th degree homogeneous
subspaces of R and Z, respectively, defined in Definition If this holds in
general, then indeed

{

5(0)-

m=0

oo
d; =HSp 7 (1) = > dimg (R /Z,) =
m=0

(The equality anzo (,fq) = 2% is a well-known equality and can be proven using
induction or using a combinatorial argument: both sides of the equation count
the number of subsets of {1,2,...,£}.) Thus, it suffices to show the equality

dimg (R,/Z,,) = ( i ) (4.2)

for all m € Z,.

For all m € Z,, the vector spaces R, and Z,, are finite-dimensional, so we
may use Definition [2] to see that dimy (R,,/Z,,) = dimp R,,, — dimy Z,,. Equa-
tion || is therefore equivalent to dimp Z,, + (rl;l) = dimp R,,. In other words,
we want to show that every R, can be written as the direct sum R, =Z,,®V,,
for some ( i)-dimensional linear subspace V,,, € R,,.

The next example verifies Equation for{ =3 and 0 < m < 3 by
exhibiting linear subspaces V,,, € R, with the stated property.

Example 73. Let { =3 and R =F,[x, y,z]. Then Fon = (f1, f2, f3), where
fr=x>+xy
fo=y*+yz
fa=2%+2x
Recall from Lemma |53|that Z,,, can be written as
T, =spang {x*f; |1 <i<nand dega =m—2}
for all m € Z. For 0 < m < 3 we find the following:
7, = spang {0}
7, = spang {0}
I, = spang {f1, fo, f3}
I3 = spang {xf1, y f1,2f1,Xf2, ¥ f2,2f2, X f3, ¥ f3,2f3}

We verify that Equation (4.2]) holds for each of these homogeneous sub-
spaces by explicitly computing an (rﬁ)-dimensional linear subspace V,, € R,
suchthat R, =7, ®V,.

* For m = 0 we have Z, = {0} and Ry = F,, since the 0-degree polyno-

mials in R are exactly the constant polynomials. The space V; = F, =

spang {1} C R, is a linear space of dimension ((3)) = 1 such that Ry =
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* For m = 1, Z; is again the zero space and R, = spany{x,y,z}. Thus,
V; = spang {x, y,2} satisfies R, = Z,,, ® V,,, and dimg V; = 3 = (3).

* For m = 2, let V, = spang {xy, xz, yz}. It is clear that Z, NV, = {0} and
dimpV, =3 = (2) Moreover, every non-zero monomial in f € R is either
of the form f = x? or f = x;x;, where xi,xj € {x,y,z}. If f = x;x;, then
it is clear that f € V,. If f = xl.z, then f = f; — x;x;77. In both cases,
f €Z,®V, and it follows that R, € Z, & V,. The reverse inclusion holds
trivially, so R,,, = Z, @ V,.

* For m =3, Ry = spang {x°,x2y,x2z,xy?,...,2°}. It can be verified that
every monomial f € R can be written as f = g +h, where g € 75 and h
is either 0 or £xyz. For example, x>y = g +h, where g = yf) —xf, € I3
and h = xyz. We leave it as an exercise to the reader to verify that this
property holds for the other monomials as well. (In the next sections, we
discuss a structural method to find such “decompositions”.) The element
xyz is not in Z3, so for V3 = spang {xyz} we have dimp V3 =1 = (g) and
Rn=Lyn® V.

In all cases above, V,, = SF,,, the linear F-span of all m-th degree square-
free monomials, satisfies R,, = Z,, ® V,,. ¢

Remark 74. The relation R,, = Z,, ® V,, does not uniquely define V,, (when
m > 2). For example, both V, = spang {xy, xz, yz} and W, = spany {xz, yz,zz}
satisfy Z, ® V, = Ry = Z, & W,, but V, # W,. Of course, both V, and W, have
vector space dimension dimy R, —dimp Z, = 3.

The following claim generalizes the result we found in Example

Claim 75 (Direct Sum Claim). Let p > 3 be prime, let { > 3 be odd, and let
T = (Fpom) be the ideal defined in Section For all m € Zs,, Ry, is the direct
sum of Z,,, and SF .

Note that SF,, is an (i)-dimensional subspace of R,,. By our discussion
above, Claim [75]is equivalent to Equation (4.2)).
The next sections are dedicated to proving the claim.

4.3 Proof Sketch for the Direct Sum Claim

Let p,{,m be as in Claim By the definition of direct sums (Definition 1)),
the Direct Sum Claim (Claim is equivalent to Z,, N SF,, = {0} and R,, =
In + SF,. Most of the difficulty of showing the claim comes from the latter
statement. In this subsection, we discuss a systematic method to decompose a
monomial f in R, as f = g +h, where g and h are polynomials in Z,, and
SF,, respectively. They key insight here is that decompositions in R, can be
used to find decompositions in R,,,;. This will allow us to prove the equality
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R =TI, + SF,, using induction on m > 0. We will see that it is not immedi-
ately obvious that the decomposition method presented in this section always
produces a decomposition, and we postpone the proof of this to Section [4.4]

Since polynomials in R, are F,,-linear combinations of monomials in R ,,, a
decomposition of an arbitrary polynomial f € R, can be found by decomposing
its terms. We therefore focus on decomposing terms in R ,,.

The following example shows the decompositions of all quadratic monomi-
alsin R =TF,[x,y,z].

Example 76. Let { =3 and R =F,[x, y,z]. Then Fon = (f1, f2, f3), where
fi=x*+xy
fo=y*+yz
f3=2>+xz
The second-degree monomials in R are {xz, 2,22, xy, yz,xz}. For every
f € {xy, yz,xz}, we have the trivial decomposition f = g+h, where g =0 € Z,

and h = f € SF,, since these monomials are already square-free.
The monomial f = x2 € R, can be written as

f=(x*+xy)—xy=g+h, (4.3)

where g = x2+ xy € T, and h = —xy € SF,. Similarly, we have

y2=(y*+yz)—yz €, +SF, (4.4)
and

2% = (zz +xz) —xz2€Z, +SF,,
since y2 + yz and 22 + xz are elements of 7, and yz, xz € SF,. ¢

The next example shows how a decomposition in R, from Example [76|can
be used to decompose a monomial in R.

Example 77. As in Example let { =3 and R = F,[x,y,z]. We want to
decompose f = x?z € R;.
Multiplying both sides of Equation (4.3)) by z yields

x%z = (x2+xy)z—xyz. (4.5)

We already know that x2 + xy € T,, so Lemma [53|implies (x2 +xy)z € 1.
Moreover, xyz is square-free. It follows that the sum in Equation (4.5) is a
decomposition of x%z € R into its Z; and SF3 components. ¢

In this example we saw that multiplying the decomposition of x? € R, by z
yields a decomposition of x?z. This is possible, because the square-free part h
of the decomposition of x2 is not divisible by z. In general, the decomposition
of a monomial f /x; may have a square-free part which is divisible by x;. In
this case, we have to take some extra steps to find a decomposition of f, as
illustrated by the following example.
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Example 78. Again, let { = 3 and R = F,[x,y,z]. We want to decompose
f=x3€R,.

Similarly to Example[77], we start by multiplying both sides of Equation
by x:

x3= (x2+xy)x—x2y. (4.6)

Lemma implies that (x2 +Xx y)x € T, but the term x2y is certainly not
square-free. This does not mean all hope is lost; if —x2y can be decomposed as
—x2y = g’ +1’, then we obtain a decomposition x> = g +h € T3 + SF5, where
g=(x*+xy)x+g €Zyand h=h'€ SF;.

We multiply both sides of Equation by —y to obtain

—xzy:—(x2+xy)y+xy2. 4.7)
The term xy? is still not square-free, so we try to decompose xy?2. Multiplying
both sides of Equation by —x yields
xy?= (y2+yz)x—xyz. (4.8)
The term xyz is square-free. Combining equations (4.6) to (4.8]), we obtain

X3 = (X2+Xy)X—X2y

= (xz+xy)x—(x2+xy)y-+—xy2

(42 (2 2 _
(x +xy)x (x +xy)y+(y +yz)x+( xi/z)
=g =

Note that g is a sum of polynomials in 75 and is therefore itself a polynomial in
7Z5. We also see that h € SF3, so f = g+ h is a decomposition of f into its 75
and SF3 components. ¢

Assume, for a moment, that we know how to decompose non-zero terms
in R,, for some integer m > 2. (The cases m = 0 and m = 1 are trivial.)
We now discuss a method to find decompositions of non-zero terms in R,
as well. To this end, let f;;y = cx* be a non-zero term in R, that is not
already square-free. Then there exists at least one variable x; dividing f(;) such
that f(l) = f(l) /X € R,, is still not square-free. By assumption, there exist
gn) € L, and h(l) € SF,, such that f = g+ h(l) Define g1y = xx§(1) and
hay = xkh(l), so that f1) = g@1) + h). (If we allowed x; such that f(;)/x; is
square-free, we would have gy = 0 and h(;), which does not help us.)

As in the examples, it follows from Lemma (53| that g(;) is in Z,,,11. If Fl(l) is
not divisible by x;, then h(; is square-free and we have found the desired de-
composition. If hpy = 71(1) = 0, we have a decomposition as well. Otherwise, if
fl(l) is a non-zero term divisible by x;, we set f(,) = h(;) and repeat. Continuing,
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we obtain the following system:

fay= g +hq
f) = 8@ +he)

: (4.9)
fiy = &m +hey

In Section we will see that every h(;) is again a term.

The system above is finite if and only if some hy;) is square-free or zero. In
this case, it follows frpm Equation that f;) = Z;{zl &) + h(j)- By con-
struction, we have Zi:l &) € L1 and hyjy € SF 44, from which it follows
that f(]) €T i1+ SFmi1-

Now consider the case where the system is infinite, i.e. none of the h( are
square-free. Observe that every f(;) is a term: f(;) is a term and, by construction,
ftiy = h(i=1) is a term for all i > 1. There are only finitely many monomials, so
there must be 1 < i < j such that f(;) = df{;, for some d € F,, \ {0}. It can be
shown that d € {—1, 1}, but we will not prove this fact until the formal proof in
Section Suppose first that 1 <i < j are such that f;) = —f(;y. Then,

j—1 j—1 -1
fo= Zg(k) +hgo1y = Zg(k) +fo = Zg(k) —fuw-

k=i k=i k=i

Adding f(; to both sides gives 2f(;) = Z;{: &) € Lpyq- Since p > 2, 2'is
invertible in F,, and we see that f(;) € Z,,,;. We conclude that f;) = Z;:l gyt
f(i) € Im+1 c Im+1 + S]:m+1-

If there exist no 1 < i < j such that f;) = —f(;, then at least there exist
1 <i<jwith fi;y = f(j)- This yields the equation

j—1 j—1 i1
foy= Zg(k) +hio1) = Zg(k) +f5 = Zg(k) + fa)-

k=i k=i k=i

From this equation it follows that Z;;ll g = 0, but we don’t learn anything
new about f(;).
In the following example, the system in Equation (4.9) is infinite.

Example 79. Let £ = 3 and R = F,[x,y,z]. We want to decompose f(;) =
x%2yz € R,. Since there exist no square-free monomials of degree 4 in R, a
decomposition exists if and only if f(;) € Z,. Necessarily, the system in Equa-
tion is infinite.

In the first step we divide f(;) by one of its divisors x; such that f(l) = fay/xx
is still not square-free. In previous examples, there was only one possibility for
X}, but in this example there are multiple possibilities.
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We first consider the system obtained by choosing x; such that k is minimal:

x*yz=y- (81— xyz) = gay—xy*s
—xy*z =x- (g —xyz) = gy — x*yz

It follows that 2x2yz = g1t 8w €L, s0f = x2yz €T, as predicted.
Next, we choose the x; such that k is maximal:

xzyz =gz- (g(l) + xyz) =gm+ xy22
xyz2 =y- (g(z) + xyz) =g+ xyzz

This system does not yield a decomposition for f. ¢

For every term f € R,,,;, we may determine a system as in Equation (4.9)),
given that we know how to decompose monomials f € R,,. The last example
shows that, depending on how we choose the x;, we may or may not derive a
decomposition from this system. In the example, the strategy of choosing xj
such that k is minimal yielded a decomposition of f. In the next section, we
will see that this strategy always produces decompositions. Some additional
information on the structure of decompositions is needed to prove this.

4.4 Proving the Direct Sum Claim

In the decomposition system in Equation , every non-zero h;) is obtained
by multiplying the square-free term h(;) by some variable x;. If x; does not di-
vide fl(i), then hy;) is square-free. Otherwise, h;) is “almost” square-free, except
for xlf. This motivates the following definition.

Definition 80. Let f be a monomial in R,,. We say that f is almost square-
free if there exist m— 1 indices 1 <i; <...<i,_;<f{andsomel<r<m-—1
such that f = x; - x;x;,---x; . We call i, and x; the repeated index and
repeated factor of f, respectively.

We define ASF to be the IF,-vector space spanned by the almost square-free
monomials of R.

We extend the notion of almost square-free monomials to terms cx* € R
(where ¢ # 0) by calling cx* almost square-free if x* is.

By induction on m > 0, we will prove that R,, = Z,, + SF,, using the de-
composition method presented in the previous section. As indicated in the proof
sketch, the induction hypothesis does not only need to include the statement
R, =ZI,+SF,, but also needs to include some information on the structure
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of decompositions f = g +h € Z,,, + SF,, to show that we can always find a

system as in Equation (4.9) from which a decomposition of f can be derived.
. . . i—1

(That is, we do not end up with equations of the form f;) = Zi:i g+ fiy)

The following theorem captures these requirements. Recall from Section |4.1

that n denotes the unique integer m € {1,...,£} such that n —m € {Z.

Theorem 81. Let p > 3 be prime, let £ > 3 be odd, and let T = (Fyom) be the
ideal defined in Section For all m € Z,, the following properties hold:

1. R, =T, +SF,.

2. Suppose that 2 < m < £ and that f = cx* is an almost square-free term in
ASF, with repeated factor x; . Then there exists a decomposition f = g-+h,
with g € Z,, and h = (—1)* - Xxe safree (f) € SF,,, where k > 1 is the
minimal positive integer such that X does not divide f.

Before proceeding with the proof of Theorem we prove a number of
lemmas for special cases. These lemmas are of great importance for the final
proof, since they describe the structure of h for certain decompositions f =
g+hel, +SF,.

Lemma 82. Suppose that Theorem holds for a fixed 2 < m < {. Let f =
c- xl.z1 X, -+ x; be an almost square-free term in ASF ;1. Then there exists a

decomposition f = g +h, where g € Z,,,1 and h € SF,,,1 are as described in
property [2] of Theorem
Proof. Let f(1y = f. Then f(l) = foy/xi, = ¢+ xl.zlxi3 ox; € ASFp,. By as-

sumption, Theorem holds for m, so we can write f(l) =g+ fl(l) such that
g(l) S Im and

z k
hay=(=1)"c X Xy Xy e X, € SFm,

where k; > 1 is the minimal positive integer such that x does not divide

iy+kq
fay- Thus, i; +k; is not equal to any of iy, 13, ..., in.
If, in addition, it holds that i; + k; # i,, then

7 k
hay = xizh(l) =(—1)"¢- X X0, Xy Xy X,

is a square-free term of degree m + 1. Moreover, g1y = x;,§(1) is an element of
Zm+1 bY Lemma We can therefore write f(1) = g1y + h1) € Zpy1 + SF -
To show minimality of k;, suppose that there exists some 1 < k < k; such that
X7k does not divide f. Then X7 does not divide f(l) either, contradicting the
fact that k; is minimal among the positive integers k such that XiTk does not

divide f(l). We conclude that f = g(;)+ h(y) is a decomposition in the form of
property [2] of Theorem
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Now, suppose that i; + k; =i5. Then
hay=(— Dkic.x, x2x x; €ASF -

17y

Let f(2) = h(1) and write
7 k
fo) = foy/xi, = (=1) 1c-xi22xl~3--~xl-m € ASF,,.

By assumption, there exists a decomposition f(z) =8ot fl(z), where gy €7,
and
h(Z) _( 1) 1-’—kz(: X

ik XipXiy T X, €SFn,

where k, > 1 is minimal among the positive integers k for which Xtk 7 does not

divide f(z) We will show that iy + ko 7 i;.
By definition, k; > 1 is the smallest positive integer such that x;——

TR does

not divide f(l). If k; = 2, then x; 4, is a monomial strictly between x; and
x;, dividing f(l) and therefore divides f(;y. This is not possible, since there is
no divisor of f between x;, and x;,, so k; must be 1. Thus, iy = i; + 1. The
condition i, + ko = i; is therefore equivalent to k, = £ — 1. Consequently, we
can show that i, + k, # i; by showing that k, # { — 1.

If k;, = { —1, then every variable in

M= {XE,XQT,...,Xm}
must divide f(z). Now, M contains £ — 1 distinct variables, while f(z) contains
m—1 < { —1 distinct variables. This is a contradiction and we conclude that
ky, <—1.

It follows that iy + ko # 17, SO

h(z) Xi h(z)—( 1)k1+k2C * X

ik, XipXip T Xi

m

is a square-free term in SF,,,;. Notice that iy + ky = i; + k; + ky. Defining
k = k; + k,, we have

k
h(z) = (_1) C- xi1+k . Xilxiz . 'Xl'm S S*Fm+1'

From minimality of k; and k, it follows that k is the smallest positive integer
such that x;— T 7 does not divide f. We conclude that, for g = g(1) + g(2) € 1
and h=h(y € 8.7-' m+1> f = & +h is a decomposition as described in propertyl
of Theorem [81]

The next lemma generalizes the result of Lemma |82 to the case where the
repeated index is any of iy,...,i,,.
Lemma 83. Suppose that Theorem holds for some fixed 2 < m < {. Let
f=c-x; -xix;, - x; bean almost square-free term in ASF ., with repeated
factor x; . Then there exists a decomposition f = g + h, where g € I,,; and
h € SF 41 are as described in property |2 of Theorem
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Proof For all k € Z, let S*: R — R be the [F,-algebra automorphism defined
by x; = x7 7. Let From = (f1,-- -, f;) be as defined in Section We first note
that .Fhom is S -invariant in the sense that S*({f},...,£;}) = {f1,...,f;} for all
k € Z. (Note that ¥ does not necessarily map f; to f;.) From Lemmaﬂwe see

that Z,,,; is Sk-invariant as well.

Letf’=81_ir(f). Thenf/ZC'Xinz"'ij, k:im

for all 1 < k < m. (The inner k + 1 —r wraps around to 1 at m.) Observe that
j1 < +++ < jm, SO we can now apply Lemma |82 to write f' = g’ + h’, where
g/ (S Im+1 and

where we set j +1—1i,

— k .
=(—1)"c- X5 X, X, - Xj €SFmi-

Here, k is the smallest positive integer such that X5k does not divide f’. Let

g = S"71(g’) and h = S*7(R’). By construction, we have f = S+~ 1(f’) =
g +h. Since 7, is Sk-invariant, we have g € Z,,..;. Moreover,

_ k
h=(-1)c- Xiog Xy Xiy o Xy, € SF iy

Note that x— TR divides f if and only if X5 divides f’, so k is also the smallest
positive 1nteger such that x;— does not divide f. We conclude that f = g+h
is a decomposition as descrlbed in property [2| of Theorem [81] O

The following lemma is the analogon of Lemma (82 for the case m = £.

Lemma 84. Suppose that Theorem[81|holds for m = (. Let f = c-x,-x1X3 X, be
an almost square-free term in ASF, . with repeated factor x,, where r € {1, 2}.
Then f € Z,,1.

Proof. Let f1y = f and define r’ =2 if r =1 and r’' = 1if r = 2. Then
f(l) =f/xp=c X, X X3 X1 € ASF,.

By assumption, we can write f~(1) =gm+ fl(l) such that g(;) € Z, and
h(l)—( e Xy XXy Xy € SFy,

where k; is the minimal positive integer such that x—— does not divide f(l)

Since x,x5 - - x, is divisible by every x; except for x,., h(l) can only be square-

free if r +ky =r'. Let g(1) = X, &(1) € Zy41 and let
h(l) = X,./;l(l) = (—1)k1 C:- X’% cXgrrXp € Ang+1.

Let fi5) = h(;y and fN@) = fio)/x, € ASF,. By assumption, we can write f(z) =
g(z) + h(z), where g(z) S Ig_,_] and

il(z) = (—1)k1+k2 c-X

ik X X3t X € SFy,
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where k, > 1 is the minimal positive integer such that X, does not divide

f(z). The only possibility for fl(z) to be square-free is if v’ + k, = r. Defining
h(z) = Xril(z), we find
hy = (—Dktkc. x? “ XXz Xy
= (—1)latkc. Xy X1Xg Xg .

= (D" £y

Now, r +k; =r' =1’/ and r’ + ky = r =T imply

ki+ko=(@"—1r)+(r—r)=0.

Since k; and k, are positive and both strictly smaller than ¢, it follows that
ki + ko ={. But £ is odd, so h(y) = —f(7). We therefore have

fay=gw tha
=gmt+fo
=8+ 8@ *he
=8+ 8@~ fw

From these equations, we obtain 2f1y = g(1) + &2) € Zy41- Notice that 2 is
invertible in Fp, so f = f1) € Zy44. O

Similarly to how Lemma [83| extends Lemma the next lemma extends
Lemma [84] to the case where the repeated index is any of 1,...,£.

Lemma 85. Suppose that Theorem [81|holds for m = (. Let f =c-x, - XX+ X,
be an almost square-free term in ASF,,, with repeated factor x,. Then f € T, ;.

Proof Let Sk: R — R be the IF,-algebra automorphism defined in the proof
of Lemma Similar to the proof of Lemma (83} we can write SI™(f) =
c- x]zlsz---xjm for indices j; < -+ < j,,. By Lemma ST (f) is in Zp44.
Since 7, ; is Sk-invariant, we conclude that f € Z;,;. O

Lemma 86. Suppose that Theorem[81|holds for some fixed m > £. Then any term
f=cx*eR 1 isin T 4.

Proof. Let x; be a monomial dividing f and let f=r/ x; € R,,. By assumption,
we can write f = g +h such that § € Z,, and h € SF,,. But SF,, = {0}, since
there exist no square-free terms of degree > {. Thus, f = x;f =x;§ €L, O

We are now in a position to prove the theorem.
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Proof of Theorem The proof is by induction on m > 0. Note that in order to
prove Z,, + SF,, = R,,, it suffices to show that every monomial x* € R, can
be written as a sum of polynomials in Z,, and SF,,. The decomposition of a
polynomial in R,,, is then simply an FF,-linear combination of the decomposition
of its monomials.

Base case m = 0. For m = 0 we have Ry = SF, = F, and 7, = {0}, so
Ro=ZIy+ SFp.

Base case m = 1. If m = 1, then Z; = {0}. All monomials in R, are
necessarily square-free, so R{ =7Z; + SF;.

Base case m = 2. Let f = x;x; be a monomial in R,. If i # j, then f
is already square-free and can be written as f = g+ h for g = 0 € Z, and
h=feS8F, Ifi=j, then f is almost square-free and can be written as
f=g+hfor g =x?+x;x77 € I, and h = —x;x;77 € SF,. Note that this
decomposition satisfies property [2| of the theorem.

Induction step. Assume that the theorem holds for some fixed m > 2. We
want to show that properties[1] and 2] of the theorem hold for m + 1 as well. To
this end, let f = x* be a monomial in R,,,;. We proceed by case analysis on m.

* Suppose 2 < m < {. If f is almost square-free, then both f € 7, ,; +
SF 41 and property [2| follow from Lemma Otherwise, let x; be a
monomial that divides f and define f /x; € R,,. By the induction hy-
pothesis, we can write f = § + h, where § € Z,, and h € SF,,. Let
g = X;§ € I, and h = x;h. Then either h € SF,,,; or h € ASF,.1.
In the latter case, Lemma [83]implies h € Z,,, ;1 + SF 11, so in both cases,
wehave f =g+heZ, 1 +SF41-

* Suppose m =£. If f is almost square-free, then it follows from Lemma
that f € 7,41 € Z;p41 + SF 4. Otherwise, let f =f/x; €T, for some
monomial x; dividing f. By the induction hypothesis, there exist § € Z,,
and h € SF,, such that f = § + h. The only square-free monomial of
degree m = { is xq--- x4, SO h must be divisible by X1,...,X%. Define
g =x;8 €T,y and h = x;h € ASF,,,;. Since h is almost square-free,
it follows from Lemma |85|that h € 7, ;. Therefore, f =g+ heZ,,; C
Im+1 +SF m+1-

* Suppose m > {. It follows immediately from Lemma [86|that f € Z,,,,; C
Im-4—1 +SF m+1-

In all cases, we find that properties (1| and [2| hold, so the theorem holds for
m+ 1 as well. O

The next result shows that the sums R,, = Z,, + SF,, from Theorem
are actually direct sums, in the sense that Z,, NSF,, = {0} forallm > 0. As a
by-product of the proof, we also learn that the generators Fj,o, = (f1,-..,fp) of
7 form a regular sequence.
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Lemma 87. Let p = 3 be prime, let £ > 3 be odd, and let T = (Fy,,p,) be the ideal
defined in Section The Direct Sum Claim (Claim holds for all m = 0.
That is, R,, =L, ® SF,, for all m > 0. Additionally, Fyom = (f1,---,fr) forms a
regular sequence.

Proof. Observe that fi,..., f; is a sequence of homogeneous polynomials, all of
degree 2. Therefore, Lemma |56 implies that for all m > 0, dimg (R,,,/Z,,) =

dimy R,,, —dimg Z,,, is bounded from below by the m-th coefficient of the power

. 1 { 2 . . . .
series 7 - l—[kzl (1 —t ) Working out this power series, we find that

¢
[T-,(1—1¢%) _ 1+ —rt) _(4o) = i(ﬁ).tm

(1o -0 =0 T
so dimp R, —dimpZ,, > (i) Simultaneously, the equality R, = Z,, + SF,
from Theorem E implies dimy R, < dimyZ,, + dimp SF,,, = dimpZ,, + (fl)
Combining the two inequalities yields dimy R, = dimp Z,,, + dimp SF .

We can now conclude two things. First, Z,, and SF,, must be disjoint,
except for the zero vector, from which we obtain that the sum R,,, =Z,,,+ SF,,
is a direct sum. Second, the inequality in Lemma [56]|is in fact an equality for
f1,---, fe, so this sequence of polynomials is regular. O

The following corollary follows immediately from Corollary |57}

Corollary 88. Let p > 3 be prime and let { > 3 be odd. The ideal T = (Fyom)
defined in Section has ideal degree 2¢.

A consequence of Corollary [88]is that the ideal degrees related to a single
round of ATRAPOS is 2¢ when ¢ > 3 is not divisible by 3.

Remark 89. Whenever ¢ > 3 is divisible by 3, one can consider the homoge-
neous variant of the ideal induced by a single round of ATRAPOS. (This ideal is
obtained by taking the top homogeneous parts of the polynomials g,..., g, that
arise from the “natural” modeling of ATRAPOS in Section[4.1]) It turns out that,
just like when £ is not divisible by 3, these homogeneous ideals are generated
by regular sequences. Hence, the ideal degree corresponding to a single round
of ATRAPOS is 2¢ for all £ > 3. A formal proof of this fact is beyond the scope
of the thesis, but the reader is encouraged to adapt the techniques presented in
this chapter to the case where £ > 3 is a multiple of 3.
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Chapter 5

Multi-Round Analysis

This chapter extends the results of Chapter[4]to multiple rounds of ATRAPOS. Let
Fhom = (f1, .-, fr) be the homogeneous system corresponding to a single round
of ATRAPOS, assuming that £ > 3 is odd and not divisible by 3. A key property of
the polynomials in /., is that they form a regular sequence of homogeneous
polynomials of the same degree. Many of the results in this chapter only rely on
this property and do not use further structure of F,,. We will therefore state
many of the results in terms of regular sequences of homogeneous polynomials
of the same degree.

Section discusses the polynomial system corresponding to R rounds of
ATRAPOS. Section is concerned with compositions of regular systems of
polynomials having the same degree. Next, Section shows that “small per-
turbations” of these regular systems, obtained by adding lower degree terms,
have the same ideal degree as the original regular system. Section[5.4]then com-
bines these results to show that the ideal corresponding to R rounds of ATRAPOS
has ideal degree 2/R,

5.1 Introduction

In Section we worked out the polynomials Fi;, = (g1,--., &) in the outer
part of the state after applying the j-th round of ATRAPOS on the input state

Qoo Q1o " Q1
a=|4dp1 ad11 - dQ-11
Xl xz ) XZ

(We assume that £ > 3 is odd and not divisible by 3.) Note that g4, ..., g, implic-
itly depend on the round constant c;. We therefore write F; j,, = (gjl, cees gﬂ)
to emphasize this dependence. Using this notation, applying ATRAPOS[R] to a
yields a state whose outer part is given by the composition Jg i, © +++ © F7 jnp.
We could similarly write F; pom = ( fitseees fjg), for the top homogeneous parts
of F; inn- However, in the previous chapter, we saw that the top homogeneous
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parts of gji,...,gj, are independent of j, since they do not involve the round
coefficient c;. The top homogeneous parts of F; j,, can therefore be unambigu-
ously denoted by Fiom = (f1,---,f¢)-

One may expect that the top homogeneous parts of the polynomials in
FRinh ©*** © F71 inn can be obtained by iterating Jy,,, R times. That is, one may

expect that the top homogeneous parts of Fg i, © - - - © F7 i, are given by ]:15};1)11
(see Definition[11)). It turns out that this is indeed the case, but this is not a triv-
ial fact. The following example shows that, for arbitrary g € (K[xq,...,x,])"
with top homogeneous parts f € (K[xq,...,x,])", the top homogeneous parts

of go g are not generally equal to fof.

Example 90. Let K be an arbitrary field and let
g=(x—y+1Lx—y)eKlx,y]*.
The top homogeneous parts of g are equal to
f=(x—y,x—y)e®lx,yD*.

We have gog=(2,1), but fof=(0,0), so the top homogeneous parts of go g
are certainly not equal to fof. O

The reason that the top homogeneous parts of g o g in Example [90|are not
equal to fo f is that the polynomials f = (x — y,x —y) do not form a regular
sequence. In the next sections, we will see that if f = (x — y, x — y) is a regular
sequence of polynomials of the same degree, the top homogeneous parts of gog
are, in fact, equal to fof.

Before continuing, we introduce some notation. First, in the remainder of
this chapter, we let K be an arbitrary field and let R = K[x3,...,x,] be a poly-
nomial ring. For the next part, suppose that g = (g, ..., &) € R’ is a sequence
of polynomials with top homogeneous parts f = (f;,...,f;) € R®. (That is,
fi=(8i)p forall 1 <i <s.) If fis a regular sequence of homogeneous polyno-
mials of the same degree, then many properties of f (e.g. the leading term ideal
or ideal degree) are the same for g. Thus, writing €; = g;—f; forall 1,...,s, we
can view g = (f; + €1,..., f; + €) as a “small perturbation” of f.

Definition 91. Let f = (fy,...,f;) € R’ be a regular sequence of d-th de-
gree homogeneous polynomials. Given polynomials €;,...,6, € R, we call
g=(f1+e€q,...,f; +€) € R’ a small perturbation of f if dege; < d for all
1<i<s.

If a property of f in Definition[91]is the same for any small perturbation g, we
say that the property is invariant under small perturbations. For example, in the
next sections we will see that the leading term ideal or ideal degree of regular
sequences of homogeneous polynomials of the same degree are invariant under
small perturbations.
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5.2 Compositions of Homogeneous Regular Systems

In this section, we prove that, given a regular sequence f = (fi,...,f,) of
d¢-th degree homogeneous polynomials in R, and another regular sequence
h = (hy,...,h,) of d,-th degree homogeneous polynomials in R, the sequence
hy(f), ..., h,(f) again forms a regular sequence of d;d¢-th degree homogeneous
polynomials.

We first show that the top homogeneous part of compositions involving reg-
ular sequences behave predictably.

Lemma 92. Let fy,..., f, be a regular sequence of polynomials in R. Let 0 < k <
n. IfheK[x,_,...,Xx,] is a polynomial such that h([fn_k]g, . [fn]Q) =0in
Q = R/ (f], ‘e ,fn_k_1>, then h =0.

Proof. Letm = degh. By induction on (m, k) (with respect to the lexicographical
ordering), we show that h =0 holds for all m € {—00}UZ5yand 0 < k < n.
Base case. If m € {—00,0} and 0 < k < n, then h = ¢ for some c € K. It
follows that [c]g = h([fn_k]g s [fn]Q) = 0 and we conclude that ¢ = 0.
Induction Step. Now, let m > 0 and 0 < k < n. Suppose that the lemma
holds for all (m’, k’) < (m, k). Write h = x,,_;q + r with degq < degh—1 and
r € K[x,_x41,---,X,]- Then h([fn_k]g,...,[fn]g) = 0 implies the equality
[failod(lfilg,-- s [falg) + r([famks1lo>- - [falg) = 0. Passing to the quo-
tient space Q' = R/ (fy,...,f,—x), we find that r([fn_kﬂ]g veeos[fulo) = 0.
If k =0, then r € K, sodegr <0. If k >0, thenr € K[xn_(k_l),...,xn].
In both cases, we may apply the induction hypothesis to obtain r = 0. This
yields [firq (f1,...,fn)]o = 0. Since [fi]o is a non-zero-divisor, we must have
[q(f1,-..,fn)]lo = 0. The induction hypothesis gives ¢ = 0, and we conclude
that h = 0. O

Proposition 93. Let f = (f;,...,f,) € R" be a regular sequence of d-th degree
homogeneous polynomials and let g = (f; + €1,...,f, + €,) € R™ be a small per-
turbation of f. Let h € R be an arbitrary polynomial. Then, the top homogeneous

component of hog is given by (h(f1 + €1, .., f + €1)rop = heop(f15 -+ - fr)- More-
over, the composition h(f; + €4,..., f, + €,) has degree d - degh.

Proof. The statement is trivial for h = 0, so we assume h # 0. Write h = ), ¢,x*
so that h(g) = >, c,8" Observe that (h(g))4 = O for all d’ > d - degh, and
(h(8))g-degn = (htop(g))d-degh = heop(f1, -5 fn). Thus, it suffices to show that
hop(f1,-- -5 fr) is non-zero. If hyy,(f1,.--, f,) = O, then Lemma 92| (with k =
n—1and Q@ = R/(0)) implies hy,, = 0. This is a contradiction (h # 0), so
hop(f1,- - - f) must be non-zero. This proves the proposition. O

The main trick in this section is to introduce auxiliary variables y,,...,y,
to reduce the degrees of the involved polynomials.

55



Solving the polynomial system

h,(f(xq,...,x,))=0

h,(f(xq,...,x,))=0

in K[xq,...,Xx,] is equivalent (in a precise sense that we will discuss shortly) to
first solving

hl(.ylﬁ"':yn):O

h(y1,---,¥) =0
inK[yy,...,¥,] (or K[Xxq,...,Xn, ¥1,---,Yn]) and then solving

fl(xlw"’xn):yl

fn(x1>"'7xn):yn

in K[xl;"')xn’ylﬁ"':yn]'
To formalize the introduction of the auxiliary variables, we define S =

K[xq,...,Xp, Y15+, Yn]). Solving the system h(f(x)) = 0 in R is equivalent to
solving h(y) = f(x) —y = 0 in S, in the sense that their affine varieties are equal
if we only consider the x-coordinates of the affine variety of the second system.
Formally, letZ = (h(f)) € Rand J = (h(y),f—y) € S. Then V(Z) = n,,(V(J)),
where 7,: K?" — K" is the projection mapping (ay,...,a,, by,...,b,) to the
n-tuple (ay,...,a,). In fact, the restriction 7,: V(J) — V(Z) is a bijection,
since every (a,...,a,) € V(Z) uniquely determines (b4, ..., b,) € K" such that
(ay,...,a,,bq,...,b,) €V(T).

However, we’re ultimately interested in the ideal degree of Z and the mere
fact that V(Z) and V() are in bijection does not guarantee that the ideal de-
grees of Z and 7 (in their respective polynomial rings) are equal. As an exam-
ple, consider the ideals (x) and <x2> in the polynomial ring K[x]. Both ideals
have the same affine variety (V({x)) = V(<x2>) = {0}), but their ideal degrees
differ, since K[x]/ (x) = spang {1} and K[x]/ <x2> = spany {1, x}. The follow-
ing lemma shows that R /Z and §/J are isomorphic as K-algebras, from which
it follows that dimg S/ J = dimg R/Z. The lemma actually proves a slightly
stronger result, which will be needed to prove that h;(f),...,h,(f) forms a reg-
ular sequence.

Lemma 94. Let S = K[xq,..., Xy, Y1,-+-,Yn). Let f = (f1,...,f,) € R" and
h=(hy,...,h,) € R" be polynomial sequences. For all 0 <i <n, let

\7i = (hl(Y),-'->hi(Y)’f1_.yly"')fn_.yn> cs
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and
L = (hu(), ..., () S R.
Then S§/J; = R/Z; as K-algebras.

Proof. Fix0<i<nandlet ¢;: S — R/Z; be the unique K-algebra homomor-
phism defined by x; — [xj]R/Ii and y; — [ff]R/Ii for all 1 < j < n. This
homomorphism is surjective, since for any [f ] € R/Z; we have f € R € S and
¢i(f) = [f g /z,- Moreover, we claim that Ker ¢; = J;, from which Lemma
follows using the First Isomorphism Theorem for Algebras (see Figure [5.1)).

Pi

S

~

R/TI;

0@1] pi />(
-
P alad
-

S1J;

Figure 5.1: Depiction of the (surjective) K-algebra homomorphism ¢; and the
induced isomorphism ;. Here, “can” denotes the canonical homomorphism
which maps f to its equivalence class [f ].

We show that J; C Ker¢; (for all 1 < i < n) by showing that ¢; maps

the generators hy(y),...,h(¥),f1 — ¥1,--->fn — ¥ Of J; to zero. First, note

that for all 1 < j < i, we have q&i(hj(y)) = hij(¢i(31),---,®:i(y,)), since ¢;
is a K-algebra homomorphism. By definition, h;(¢;(y1),...,¢:(y,)) equals

hj([fl]R/Il_,...,[fn]R/Il_) = [hj(fl,...,fn)]R/L. (The last equality is again
a consequence of the canonical homomorphism can: R — R/Z; being a K-
algebra homomorphism.) It follows that qbi(hj(y)) = [hj( flseees fn)]

[hj(f)]R/L = 0. We also have
¢ifi—y;) = :i(£) = 0:(v)) =filr)z —[filryz, =0

forall 1 <j <i. Since ¢; maps a basis of J; to zero, we must have 7; C Ker ¢;.
For the converse inclusion, let g = . p ca’ﬁx"‘yﬁ € Ker ¢;. Then ¢;(g) =

RIT, —

[Z ap Cap x*fP ]R/I = 0 implies that 3}, 4 ca,pX P € T, so there exist polyno-

mials uq,...,u; € R such that
i
an,ﬁx"‘fﬁ = Zujhj(f). (5.1)
a,p j=1
It follows from [yj]s/] = [fj]S/J- (forall 1 <j <n) that
[g]S/ji = an,[ixayﬁ = an,ﬁxafﬂ
a,p a,f

S/7; S/
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Applying Equation li followed by the equality [ Yj ] S)7 = [ fi ] S/ again,
then yields

i i

[g1s/7 = | D uih;(6) = | > uhi(y) =0.
= sig L7 S/,

It follows that g € 7; and Ker ¢; € J;.

We now know that Ker ¢; = 7;. The First Isomorphism Theorem for Alge-
bras (Proposition implies that the K-algebra homomorphism ¢;: S/J; —
R/Z; defined by [XJ]S/Ji — [XJ]R/L and [yj]s/ji — [fj]R/Ii forall1<j<n
is a well-defined K-algebra isomorphism. O

Lemma [94] allows us to reason about R/ (h(f)) using the quotient space
S/ (h(y),f—y). By assumption, hy,...,h, is a regular sequence of polynomi-
als in R. It is immediate that h,(y),...,h,(y) forms a regular sequence in
K[y1,-.-.,Yn]) and Lemma |60/ implies that the latter sequence also forms a reg-
ular sequence in & = K[x1,...,Xy, Y1,---,YnJ)- This insight, together with the
isomorphisms ¢, ..., ¢,: S/J; = R/Z; from Lemma [94] allows us to prove an
important result on the composition of regular sequences.

Theorem 95. Let f = (fi,...,f,) € R" and h = (hq,...,h,) € R" be regular
sequences of homogeneous polynomials. Then h,(f),...,h,(f) also forms a regular
sequence in R.

Proof. To show that hy(f),...,h,(f) forms a regular sequence in R, we need
to show that Z, = (hy(f),...,h,(f)) is a proper ideal (i.e. it does not equal
R) and that for all 1 < i < n, [h;(f)] is a non-zero-divisor for R/Z;_;. Here,
Z; 1 = (hy(f),...,h;_1(f)) € R is as in the proof of Lemma [94]

Recall that 7, is a proper ideal of R if and only if 1 ¢ Z,,. Every element of Z,
can be written as Z?:l u;h;(f), where uy,...,u, € R. Since f and h form regular
sequences, their degrees must be strictly positive (Remark [59). Moreover, the
polynomials in f and h are homogeneous, so the 0-th degree homogeneous parts
of these polynomials are zero. Consequently, the 0-th degree homogeneous part
of every h;(f) is zero. Taking the 0-th degree homogeneous part of both sides
of Z?:l u;h;(f) = 1 yields the contradiction 0 = 1. We conclude that 1 ¢ Z,,.

Next, suppose that [u - hi(f)]R/Ii_1 =0forsomel <i<nanduecR. Let
the ideal

Jim1 = (), i fi— Y1 s fa—Ya) €S
and the K-algebra isomorphism ¢;_;: S/J;_1 — R/Z;_; be as in the proof of
Lemma Note that goi_l([u . hi(y)]S/ji_l) = [u-hi(f)]lr,z_,- Therefore,

[u- hi(Y)]S/ji_l = QPi__ll([u : hi(f)]R/Ii_l) = (Pi__ll(o) =0.
Since [h;(y)]s/s_, is a non-zero-divisor, we must have [u]s;s , = 0. Applying

¢i—1 to both sides then yields [u]z,7_, = cpi_l([u]s/Ji_l) = 0, proving that
every [h;(f)]x /7,_, is a non-zero-divisor. O
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Corollary 96. Let f1,..., f, € R be a regular sequence of ds-th degree polynomi-
als and let hq,...,h, € R be a regular sequence of d;,-th degree polynomials. Then
hy(f), ..., h,(f) forms a regular sequence of homogeneous dydg-th degree polyno-
mials.

Proof. It follows from Proposition[93|and Theorem[95|that h;(f), ... , h,(f) forms
a regular sequence of dyd¢-th degree polynomials. Homogeneity of the poly-
nomials in the composition follows from the homogeneity of the polynomials
fir--sfpand hy,... k. O

Corollary 97. Let f = (fy,...,f,) € R" be a regular sequence of d-th degree
homogeneous polynomials. For all i > 0, the i-th iteration f) = ( 1(1), e ,fn(i)) €
R of f forms a regular sequence of homogeneous d'-th degree polynomials.

Proof. The proof is by induction on i = 0. We know from Corollary that
fO = (x;,..., x,) forms a regular sequence of linear homogeneous polynomials.
Next, suppose that f) forms a regular sequence of d'-th degree homogeneous
polynomials for some i > 0. By Corollary i+ = fo ) forms a regular
sequence of homogeneous polynomials of degree d - d' = d'*!. O

The results obtained so far allow us to compute the ideal degree of the
iterations of a polynomial system consisting of homogeneous d-th degree poly-
nomials.

Theorem 98. Let fy,..., f, € R be a regular sequence of homogeneous d-th degree
polynomials. For alli > 0, let 0 = (fl(l), . ,fn(i)) € R" be the i-th iteration of f.
The ideal (fm> has ideal degree d'".

Proof. Fixi> 0By Corollary f (i), cee, frl(i) forms a regular sequence of di-th
degree homogeneous polynomials. It follows from Corollary that (f(i)> has
ideal degree d'". O

5.3 Small Perturbations of Regular Systems

Let f = (fy,...,f;) € R’ be a regular sequence of d-th degree homogeneous
polynomials. We know from Corollary [57] that the ideal (f) = (fi,..., f;) has
ideal degree d°. Recall that we call g = (f; +€1,...,f,+€,) € R’ a small
perturbation of f if dege; < d for all 1 < i <s. In this section, we will show
that the ideal (g) = (f; +€4,...,f; + €,) generated by the small perturbation g
of f has the same ideal degree as (f).

We know from Lemma 38| that R/ (f) is isomorphic as a K-vector space to
spang {x* € R | x* ¢ (LT ((f)))} for an arbitrary monomial ordering >. Similarly,
R/ (g) = spang{x* € R | x* ¢ (LT ((g)))} as K-vector spaces. We can therefore
show that dimyg R/ (f) = dimg R/ (g) by showing that (LT ((f))) = (LT ({g))) for
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some monomial ordering >. This equality turns out to hold true when > is an
arbitrary graded monomial ordering. We prove it by separately showing the
inclusions (LT ({(f))) € (LT ((g))) and (LT ((g))) € (LT ({f))). We start by proving
the former inclusion, which is the easiest of the two.

Lemma 99. Let f = (fi,..., f;) € R’ be a regular sequence of d-th degree homoge-
neous polynomials and let g = (f; + €1,..., f; + €;) € R® be a small perturbation
of f. Then (LT ({f))) € (LT ({g))) with respect to any graded monomial ordering >
on R.

Proof. Observe that it suffices to show the inclusion LT ({f))\{0} € LT ({g)), since
(LT ({f))) and (LT ((g))) are both ideals. Every non-zero element in LT (({f)) is
of the form h = LT (ijl u; fi) for some polynomials uq,...,u;, € R. For all
1<i<sandd >0, we define (u;); to be the homogeneous part of degree d’
of u;. Every u; can then be written as the finite sum u; = . ;o (U;) g/, 50

h=LT (Z > (ui)d,fi) = LT(Z Zs:(ui)d,fi).

i=1d’>0 d’>0i=1

Since f1, ..., f; are homogeneous polynomials of degree d, every (u;), f; either
has degree d’ + d or is zero. It follows that h = LT (2;1 (uidg, fi), where d,
is the largest integer d’ for which Z?:l (u;)4 f; is non-zero. (Such a d, exists,
since f # 0.) This sum must have degree d, + d. The degree of Z§=1 (udg, €
is strictly smaller than d;, + d, since the €; have degree < d. Therefore,

h=LT (Z (Wg, fi+ 2, (g, ei) €LT((g)).
i=1 i=1

We conclude that (LT ({(f))) € (LT ({g))). O

Lemma 100. Let f = (fy,..., f;) € R’ be a regular sequence of d-th degree homo-
geneous polynomials and let g = (f; +€1,...,f; + €;) € R® be a small perturba-
tion of f. For all uq,...,u; € R, we have

(Z u; (f; +ei)) < (5.2)
top

i=1

with respect to any graded monomial ordering > on R. Consequently, (LT ({(g))) €

(LT ((£))-

Proof. We first show how the inclusion (LT ({g))) € (LT ({f))) follows from the
first part of the lemma. As in the proof of Lemma it suffices to show the
inclusion LT ({g)) \ {0} € LT((f)). To this end, let h = >>._ u; (f; +¢€;) be an
arbitrary non-zero polynomial in (g). By Equation , hiop € (f). We conclude
that LT (h) = LT (hy,p) € LT ({f).

60



It remains to show that Equation (5.2) holds for all u;,...,u; € R. The
proof is by induction on d* := max;<;<;degu; > —o0. In the base case d* =
—o0, all u; are zero, so Equation (5.2)) holds trivially. For the induction step,
let d* > 0 and suppose that Equation (5.2)) holds for all u,...,u; € R with
max; ¢; <, degu’ < d*. We write

Zu (f1+€)—ZZ(u)df(fl+€)

i=1 =0i=1
d*—1 s d*—1 s
—Z(u )d*fl+2(u Da €i +ZZ(u )d/fl+ZZ(u ir €
=0i=1 =01i=1
_A ;EZ =C —D

where (u;),; denotes the d’-th degree homogeneous part of u;. Since both
(u1)gs»--->(us)g« and fy,..., f; are homogeneous sequences of d*-th degree
and d-th degree polynomials, respectively, the sum Zs (u;) 4+ f; either has de-

gree d* + d or is zero. If the sum is non-zero, then (Zl (u; (fi te ))mp =

(Zizl (ui)d*fi)top: because Zizl (ui)g- € + dezo i:1 (u;)q (fi +€;) has de-
gree strictly less than d*+d. Otherwise, if Z§=1 (ui)g+ fi =0, then (uq) ge - - -, (Us)g=
forms a syzygy of the regular sequence. fi,...,f,. By Lemma |62 there exist
polynomials wyy,...,wy, € R such that (u;)4 = Zj 1 wiifj- The w;; also sat-
isfy wi; = —wj; and w;; =0forall 1 <i,j <s. Without loss of generahty, we
assume that every w;; is either zero or has degree d* —d. We now have

B = Z(u )d*e _Zzwl]fle _Z ifi;

i=1 j=1 i=1

where v; = Zj  wj€j forall 1 < i <s. Define u; = v; + Zgj_é (u;)q for
all 1 <i<s. We will show that >'_, u; (f; + €;) = D, u} (f; + ¢;) and that
degu; < d* for all 1 < i <s. Note that Zl (Uf; = B+ C. We also have

Dl uje;=S+D,where S=3_ > wj;€;€;. However,

Z (WU+W €;€ +Zwue =0,

1<i<j<s

since both sums on the right-hand side consist of zero terms. It now follows that

S U (fi+e)=B+C+D =2 _ u;(fi+¢€;). RecallthatA=>"_, (u)g fi =
0.) For all 1 <i <s, we have degv; < max;degwj;e; < (d*—d)+(d—1) =

d*—1 and deg (Zi:& (ul-)d,) < d*—1, so degu; < d* — 1. We may therefore
use the induction hypothesis to conclude that

(Zszui(fi"‘ei)) =(Zs:u§(fi+ei)) e(f).
top top

i=1 i=1
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The following theorem is an immediate consequence of Lemma (99| and
Lemma [I00l

Theorem 101. Let f = (fy,...,f;) € R’ be a regular sequence of d-th degree
homogeneous polynomials and let g = (f; + €1,...,f; + €;) € R® be a small per-
turbation of f. Then (LT ({f))) = (LT ({g))) with respect to any graded monomial
ordering > on R.

Theorem 102. Let f = (fi,...,f;) € R’ be a regular sequence of d-th degree
homogeneous polynomials and let g = (f; + €1,...,f; + €;) € R® be a small per-
turbation of f. Then (f) and (g) have the same ideal degree, which is equal to
d.

Proof. Fix an arbitrary graded monomial ordering > on R. By Lemma [38]
R/ (g) is isomorphic as a K-vector space to S; = span, {x* € R | x* ¢ (LT ((g)))}
By Theorem [101] this span equals S, = spang{x* € R | x* ¢ (LT({f)))}. Ap-
plying Lemma again, we see that S, is isomorphic as a K-vector space to
R/ (f). We now have R/(g) =S, =S, = R/ (f) (as K-vector spaces) and use
Corollary[57]to conclude that dimg R/ (g) = dimg R/ (f) = d°. O

5.4 Compositions of Perturbed Regular Systems

This section combines and summarizes results from Section[5.2]and Section[5.3]
to derive results on compositions of small perturbations of regular sequences of
d-th degree homogeneous polynomials.

We start with a proposition concerning compositions of small perturbations.

Proposition 103. Let f,f € R" be regular sequences of d-th and d’-th degree
homogeneous polynomials, respectively, and let g, g € R™ be small perturbation
of fand f, respectively. Then, the composition f of is a regular sequence of d’d-th
degree homogeneous polynomials and g’ o g is a small perturbation of f o f.

Proof. We know from Corollary that f’ o f forms a regular sequence of d’d-th
degree homogeneous polynomials. Applying Proposition we find that the
top homogeneous parts of g’ o g are equal to f' o f. This is equivalent to g’ o g
being a small perturbation of f o f. O

The following theorem summarizes the results from this chapter.

Theorem 104. Let f,...,f;, € R" be regular sequences such that f; consists of
d;-th degree homogeneous polynomials, for all 1 <i < n. Let g1,...,8x € R" be
small perturbations of f,...,f, € R", respectively. Then the following holds:

1. The composition f o---of; is a regular sequence of d; - - - di.-th degree homo-
geneous polynomials and gy o --- o g; is a small perturbation of f, o---of;.

2. The ideal (f; o---of;) has ideal degree (d; ---di)".
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3. The ideal (g; o ---og;) has ideal degree (d; ---d;)".

Proof. Property(1]is obtained by repeatedly applying Proposition Property
then follows from Corollary[57} Lastly, 3] follows from Theorem [102] O

Theorem[104]can be used to find the ideal degree corresponding to ATRAPOS [R].

Corollary 105. Let £ > 3 be an odd number not divisible by 3, let p > 3 be a prime
number, and let R = Fp[xy,...,x,]. As defined in Section let Finn € R be
the polynomials corresponding to the j-th round of ATRAPOS. Then, the ideal
<J—"R,inh 0:--0 fl,inh> corresponding to the first R > 1 rounds of ATRAPOS has ideal
degree 2%,

Proof. From our discussion in Section we know that every F; i, € Risa
small perturbation of the homogeneous system Fj,,, = (f1,..-,f;) defined in
Section By definition, f;,..., f, are homogeneous polynomials of degree
d = 2. Additionally, these polynomials form a regular sequence (Lemma [87).

7
By Theorem (104} the ideal <.7-"R’inh 0::0 -7:1,inh> has ideal degree (]_[le d) =
2R, O

5.5 Minimal Number of Rounds for ATRAPOS

We conclude this chapter by discussing the minimal number of rounds R re-
quired for ATRAPOS [R] to achieve a security of 128 bits against algebraic at-
tacks.

From the discussion in Subsection we know that the complexity of
solving ]-"l(fh) for a single solution is dominated by the FGLM step, which requires

_ . . . . . _ _ (R
Crgim = d field operations in FF,,. The conservative choice w =2 and d7 =2

(Corollary i together yield a conservative estimation of Cpgyy = 22R.
Given an odd £ > 3 not divisible by 3, ATRAPOS-SPONGE has a security level
against algebraic attacks of

A =log, (CF?M) =log, (ZZZR) = 2(R bits

with respect to field operations in F,, (addition and multiplication). The success
probability P of the attack equals 1. To obtain (at least) 128 bits of security
against algebraic attacks, we need 2R > 128. The minimum R satisfying this
equation is R = [%] For KYBER (¢ = 17), this yields R = 4 (resulting in 136
bits of security). For DILITHIUM (£ = 7), we obtain R = 10 (resulting in 140 bits
of security).

Note that these results do not yet include a security margin to account for
possible improvements to the three-step algorithm discussed in Subsection[3.2.1]
Also, there may be other attacks for which a higher number of rounds would be
required. This is, however, outside the scope of this thesis.
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Remark 106. The 128 bits of security against algebraic attacks discussed here
is with respect to field operations in F,, while the 128 bits of security against
brute-force attacks (as stated in Section[3.1)) is with respect to evaluations of the
ATRAPOS permutation. These security claims are therefore not directly compara-
ble. One way to compare both claims is to estimate and compare the complexi-
ties (using e.g. “gate equivalents”) of optimal circuits that realize the brute-force
and algebraic attacks, respectively. We will not pursue this endeavor.
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Chapter 6

Experimental Results

In Section [5.5| we estimated that the FGLM step when solving the CICO prob-
lem in Deﬁnitionfor R-round ATRAPOS requires Cpgpy = 2% field operations
in F,, assuming that £ > 3 is odd and not divisible by 3. Ultimately, this esti-
mated time complexity stems from the upper bound (’)(nd;’ ) for the full FGLM
algorithm (Proposition [46]), which is assumed to be tight. (We use Z to denote
the ideal corresponding to R-round ATRAPOS.) In this chapter we run small-
scale experiments to verify the tightness of this bound for a specific instance of
the FGLM algorithm (in Magma). We also measure the time spent on the DRL
Grobner basis computation (using F4) and find that it is negligible compared to
the time spent on the lexicographic Grobner basis computation (using FGLM).
Since Magma does not implement the modified FGLM algorithm discussed in
Section (where we only solve for a single solution using an FGLM variant
that exploits sparsity), we perform our experiments using the traditional FGLM
algorithm.

The experiments were conducted using Magma (V2.28-8) [BCP97]] on a
computer with an Intel i9-9900K CPU (3.60 GHz) and 64 GiB of RAM. The
code is included in Sections[A.2l and [A.3]

The ATRAPOS permutation defined in Chapter (3| allows either £ = 17 (for
KYBER) or £ = 7 (for DILITHIUM), but is also a permutation for any odd ¢ > 3.
This permits us to perform small-scale experiments for small values of £ and
R. The experiments were conducted using an implementation of the ATRAPOS
permutation in Magma. The implementation uses the column shifts ry = 0,
r1 =1, and ry = r; + 1 = 2. The round constants are set to ¢; = 1, ¢, = 2, etc.,
and p was set to the prime p = 3329 used in KYBER.

Remark 107. We state without proof that the ideals corresponding to a sin-
gle round of ATRAPOS also have ideal degree 2¢ if ¢ > 3 is a multiple of three.
Moreover, the top homogeneous parts of their “natural” generators form a regu-
lar sequence of £ quadratic polynomials. For small ¢, this can be directly verified
by computing their Hilbert series.

A consequence is that the complexity estimate Crg;y holds for all odd £ > 3.
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We will therefore also consider £ > 3 divisible by three in our experiments.
See also Remark [89]

For several combinations of (odd) £ > 3 and R > 1, the following steps were
performed:

1. Calculate the state a’ obtained by running ATRAPOS [R] on the input state
a = (0,0,x)". (That is, the first two rows, corresponding to the inner
part of the state, are set to zero. The bottom row, which corresponds to
the outer part, consists of variables x,...,x,.) We denote the outer part
(bottom row) of a’ by g.

2. Compute a DRL Grobner basis for (g) € F,[x,...,x,] using the F4 algo-
rithm.

3. Convert the DRL Grobner basis to a lexicographic Grobner basis using the
FGLM algorithm.

The steps above were repeated five times for each combination of £ and R
to account for random fluctuations in running times.

Table lists the mean running times for the F4 (step [2) and FGLM (step
3D steps. In all cases, the total running time is dominated by the running time
of FGLM. This observation justifies our choice of analyzing only the time com-
plexity of the FGLM step.

R=1 R=2 R=3 R=4 R=5

=3 0.00s (0.00s) | 0.01s (0.00s) | 0.13s (0.00s) | 50s (0.00s) | 7h31m (0.00s)
£=5 0.00s (0.01s) | 2.40s (0.26s)
=7 0.01s (0.01s)
=9 0.15s (0.00s)
£=11 | 6.35s (0.09s)
£ =13 | 6m36s (0.77s)

Table 6.1: Running times for F4 (gray, between parenthesis) and FGLM for
small (odd) £ = 3 and R > 1. The numbers listed represent the mean over five
identical experiments. Empty cells correspond to experiments that resulted in
an out-of-memory error. Experiments with R > 6 or £ > 15 resulted in out-of-
memory errors as well.

The experimental results also help us reason about the actual time complex-
ity of the FGLM step (in Magma). Assuming that the FGLM implementation in
Magma requires roughly £d} = { -2k field operations in F,, itis reasonable to
estimate the time spent on FGLM by Tgqry = cf - 2R for some constant ¢ > 0.
(The actual value of ¢ is very implementation specific, as it depends on the
combination of hardware and software used for the FGLM step.) This estimate
depends on both £ and R. Dividing Tggry by £, we obtain Tpgrpy /¢ = ¢ - 29,
which only depends on the product /R. Therefore, if we denote the actual run-
ning times for the FGLM step by T, we expect the points ({R, T /{) to be close
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to the curve c-2¢‘R for some ¢ > 0 and 2 < w < 3. Equivalently, for every point
((R, T /L), we expect log, (T /) ~ wlR + b, where b = log, c.

104 | :

102 - Tf’ ~ 22.913(’}3*31‘478
1t

100 -

T/ (s)

102 : :

10—4 - |

| | | i

6 8 10 12 14 16
{R

107

N [T

Figure 6.1: Scatter plot of measured FGLM running times T, divided by £, as a
function of /R. The blue line denotes the fitted line.

Figure shows T /{ as a function of {R, together with a fitted curve Ty, =
200R+b " The fitted curve was obtained by performing a polynomial fit of the
linear polynomial w{R + b on the points (ZR, log, (T /¢ )). For small ¢R, the
results may be skewed, since the memory used by the FGLM step fits completely
within the L3 cache. For this reason, only points with £R > 9 were considered
for this fit. These points correspond to experiments where the memory used by
Magma exceeded the L3 cache (16 MB).

The results in Figure [6.1] are surprisingly close to our expectations. For
example, & ~ 2.913, which is not too far off from the value w =log, 7 ~ 2.807
we would expect for Strassen multiplication. Note that for small /R, a larger
part of the data fits in the CPU caches, which would speed up the algorithm. If
we look at the observed running times, however, it seems that they are higher
than the predicted running times when /R is small. A possible explanation is
that the FGLM implementation in Magma involves a constant time component
(e.g. a setup phase): when (R is small, the total running time is low, so the
constant time component is relatively high, compared to the total running time.

As a concluding remark, we want to stress that these experimental results
by themselves do not constitute a proof that solving the CICO problem is hard.
They only show that the complexity of solving (small instances of) the CICO
problem using the FGLM implementation in this version of Magma agrees with
our expectations. Nevertheless, these experimental results give some assurance
that the theoretical running time Tpgy = cf - 2@R for the FGLM step when
solving the CICO problem is reasonable. By extension, the results give some
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assurance that the time complexity Cpgyy = 2R for the optimized FGLM variant
discussed in Section is reasonable.
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Chapter 7

Related Work

Since the ATRAPOS-SPONGE specification has not been published yet, no prior
(publicly available) research on the security of ATRAPOS-SPONGE against alge-
braic attacks exists. There is, however, a vast amount of published research on
algebraic attacks against other cryptographic algorithms.

The application of algebraic techniques in cryptanalysis is not new. For in-
stance, the authors of a 2002 paper [[CP02]] modeled the AES block cipher using
an overdetermined system of (quadratic) polynomial equations. Subsequently,
they described a method to recover the secret key using an attack they call the
“eXtended Sparse Linearization” (XSL) attack. The authors conjecture that the
security of AES does not grow exponentially with the number of rounds and
that their proposed attack seems to break AES-256. However, this claim has
been disputed by [[CLO5]].

A few years later, in 2006, [[BPWO06]] presented a key recovery attack for AES
using Grobner basis techniques. The authors give a polynomial modeling of
AES such that the polynomials already form a Grébner basis with respect to the
DRL ordering. The corresponding ideal degree is 254%%° a 21598 which makes
obtaining a Grébner basis with respect to the lexicographic ordering using FGLM
prohibitively expensive. This technique does therefore not break AES.

More recently, algebraic cryptanalysis using Grobner bases has received new
attention in the context of “arithmetization-oriented” cryptography. Arithmeti-
zation-oriented primitives are used in e.g. zero-knowledge protocols and op-
erate on elements in finite fields F, for large p. For these primitives, Grobner
basis techniques are often assumed to be the most efficient attack techniques
[KLR24].

As an example, [KLR24] investigates the security of Anemoi, an arithmetiza-
tion-oriented permutation-based hash function, against Grobner basis attacks.
The authors define two polynomial modelings for Anemoi. For both of these
modelings, they estimate the complexity of computing a DRL Grébner basis as
well as the complexity of the basis conversion step using FGLM, by extrapolating
from small-scale experiments. In [[CR25]], an alternative modeling for Anemoi
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is presented. The authors derive complexities for both the DRL Grobner basis
computation and the basis conversion step (based on the ideal degree). The
ideal degree is determined by counting the number of monomials in the quotient
space R/Z corresponding to their polynomial modeling of Anemoi. It is unclear
whether the techniques used in [[CR25]] can be adapted to determine the ideal
degree of our modeling of ATRAPOS.
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Chapter 8

Conclusions

In this thesis, we described ATRAPOS-SPONGE and analyzed a specific CICO prob-
lem related to single-block preimage resistance. As we have seen, solving this
CICO problem amounts to solving a system of polynomial equations. We esti-
mated the complexity of this problem using the ideal degree corresponding to
the ATRAPOS permutation in the sponge construction.

We showed that the homogeneous ideal corresponding to a single round
of ATRAPOS is generated by a regular sequence of polynomials and used this
fact to show that the homogeneous ideal corresponding to R-round ATRAPOS is
generated by a regular sequence as well. In both cases, properties of regular
sequences were used to extend the results to the inhomogeneous case.

Ultimately, we proved that the complexity of the CICO problem for R-round
ATRAPOS is 2“® and used this to derive the minimum number of rounds re-
quired to obtain 128 bits of security (with respect to our CICO problem) when
ATRAPOS-SPONGE is used in KYBER and DILITHIUM.

In Chapter [6| we confirmed the theoretical results obtained in earlier chap-
ters.

8.1 Future Research

We outline three areas of interest for future research.

First, the research in this thesis is confined to instantiations of ATRAPOS
where only the bottom row of the two-dimensional state is used for the outer
part of the state (“the r = £ case”). The current ATRAPOS specification also
allows the bottom two rows to be used for the outer part (“the r = 2{ case”).
In the latter case, the polynomials g, ..., g5, that describe the outer part of the
state after the ATRAPOS permutation (cf. Section no longer all have the
same total degree. Many of our results depend on all g; having the same total
degree and extending the results to the r = 2¢ case seems non-trivial. Future
research is needed to determine the security properties of ATRAPOS in the latter
case, possibly purely experimentally.
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Second, the polynomial systems we analyzed are “critically determined” in
the sense that there are as many equations as there are unknowns. (The systems
are neither overdetermined nor underdetermined.) An adversary can force the
system to be overdetermined by simply guessing one or more unknowns and
then solving the system for the remaining variables. In the extreme case, the
attacker guesses every unknown, entirely bypassing the need for the F4/F5 and
FGLM algorithms. Anecdotally, guessing unknowns does not reduce the com-
plexity of solving the CICO problem below 128 bits, but more research is needed
to properly verify this.

Finally, the CICO problem in Definition[70]is strongly related to the preimage
resistance of ATRAPOS-SPONGE. Besides preimage resistance, second-preimage
resistance and collision resistance are also important properties for an extendable-
output function (XOF). Investigating the second-preimage resistance and colli-
sion resistance of ATRAPOS-SPONGE, for example by formulating these proper-
ties in terms of polynomial systems, would be an interesting direction for future
research.
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Appendix A

Code

A.1 Hilbert Series Computation (hilbert_series.py)

The following Python file computes the Hilbert series of R/Z;,, for small odd
{ > 3 (see Section 4.2)).

from sage.all import GF, PolynomialRing, ideal
K = GF(3329)

for ell in range(3, 30, 2):
R = PolynomialRing(K, ell, 'x', order='degrevlex')
I = ideal([
R.gen(i) * (R.gen(i) + R.gen((i + 1) % ell))
for i in range(0, ell)
D
print(f'{ell:02d}: {I.hilbert_series()1}')

A.2 ATrAPOS Implementation (atrapos.mag)

The following Magma file implements the ATRAPOS permutation as specified in
Subsection and Chapter [0

// wrapping for 1l-based indices

WrapIndex := func<i, n | ((i - 1) mod n) + 1>;
WrapX := func<x, ell | WrapIndex(x, ell)>;
WrapY := func<y | WrapIndex(y, 3)>;

// computes the state S having the same dimensions as ~state” such that
// “s_{xy} = f(state, x, y)°
MapState := function(state, f);
return Matrix(
[[f(state, x, y) : x in [1..Ncols(state)]] : y in [1..Nrows(state)]]
);

end function;
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Theta := function(state);
ell := NumberOfColumns(state);
return MapState(
state,
func<state, x, y |
stately, x]
+ state[WrapY(y + 1), WrapX(x + 1, ell)]
+ state[WrapY(y + 4), WrapX(x + 4, ell)]
+ state[WrapY(y + 5), WrapX(x + 5, ell)]
>);
end function;

Rho := function(state, ry);
ell := NumberOfColumns(state);
return MapState(
state,
func<state, x, y |
stately, WrapX(x + rylyl, ell)]
>);
end function;

Iota := function(state, c);
return MapState(
state,
func<state, x, y |
(x eq 1 and y eq 1) select stately, x] + c else stately, x]
>);
end function;

Gamma := function(state);
return MapState(
state,
func<state, x, y |
(y eq 1) select stately, x] + state[2, x] * state[3, x] else stately, x]
>);
end function;

// a single round of Atrapos with column shifts ry and round constant c
Atrapos := func<state, ry, c¢ | Gamma(Iota(Rho(Theta(state), ry), c))>;

A.3 Experiments (experiments.mag)

The following Magma file performs the experiments described in Chapter 6]

SetVerbose ("Groebner", 0);
SetVerbose ("FGLM", 0);
SetNthreads(1);

load "./atrapos.mag";
// column shifts

ry := AssociativeArray(Integers());
ry[1] := 0;
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ry[2] := 1;
ry[3] ry[2] + 1;

// round constants
cj := [1..10];

// Limit the number of rounds (depending on ell) to avoid out-of-memory
// exceptions. The default maximum is 1.

maxRounds := AssociativeArray(Integers());

maxRounds[3] := 5;

maxRounds [5] 2;

// ground field
K := GF(3329);

// how often to repeat every experiment
repetitions := 5;

ells := [3..13 by 2];

// Run and benchmark a single round of Atrapos. Returns the modified state.
BenchmarkRound := function(state, ell, round, ry, c, R);
ResetMaximumMemoryUsage () ;
start := Cputime();
state := Atrapos(state, ry, c);

outerPart := RowSequence(state) [1];
stop := Cputime();
maxMem := GetMaximumMemoryUsage();

printf "[ell=)o, R=Vo] Computed state : time=Y.40, max_mem=%o\n",
ell, round, (stop - start), maxMem;

ResetMaximumMemoryUsage () ;

start := Cputime();

I_drl := ideal<R | outerPart>;

GB_drl := GroebmnerBasis(I_drl);

stop := Cputime();

maxMem := GetMaximumMemoryUsage() ;

printf "[ell=)o, R=J,0o] Computed DRL GB: time=%.40, max_mem=%o0\n",
ell, round, (stop - start), maxMem;

ResetMaximumMemoryUsage () ;
start := Cputime();
I_lex := ChangeOrder(I_drl, "lex");

GB_lex := GroebnerBasis(I_lex: Al := "FGLM");
stop := Cputime();
maxMem := GetMaximumMemoryUsage() ;

printf "[ell=%o, R=V,0] Computed LEX GB: time=).40, max_mem=/o\n",
ell, round, (stop - start), maxMem;

printf "\n";

return state;
end function;
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for ell in ells do
R := PolynomialRing(K, ell, "grevlex");

for repetition in [1..repetitions] do
printf "ell=Yo, repetition=Y,0\n", ell, repetition;

state := Matrix([
[R.i : i in [1..ell1l],
[o : i din [1..el1]],
[0 : idin [1..el1]]
IDH
max := IsDefined(maxRounds, ell) select maxRounds[ell] else 1;
for round in [1..max] do
¢ := cjlround];
state := BenchmarkRound(state, ell, round, ry, c, R);
end for;
end for;
end for;
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